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Chapter 1
Models

C. R. Henderson

1984 - Guelph

This book is concerned exclusively with the analysis of data arising from an experi-
ment or sampling scheme for which a linear model is assumed to be a suitable approxi-
mation. We should not, however, be so naive as to believe that a linear model is always
correct. The important consideration is whether its use permits predictions to be ac-
complished accurately enough for our purposes. This chapter will deal with a general
formulation that encompasses all linear models that have been used in animal breeding
and related fields. Some suggestions for choosing a model will also be discussed.

All linear models can, I believe, be written as follows with proper definition of the
various elements of the model. Define the observable data vector with n elements as y.
In order for the problem to be amenable to a statistical analysis from which we can draw
inferences concerning the parameters of the model or can predict future observations it is
necessary that the data vector be regarded legitimately as a random sample from some
real or conceptual population with some known or assumed distribution. Because we
seldom know what the true distribution really is, a commonly used method is to assume
as an approximation to the truth that the distribution is multivariate normal. Analyses
based on this approximation often have remarkable power. See, for example, Cochran
(1937). The multivariate normal distribution is defined completely by its mean and by
its central second moments. Consequently we write a linear model for y with elements in
the model that determine these moments. This is

y = Xβ + Zu + e.

X is a known, fixed, n× p matrix with rank = r ≤ minimum of (n, p).

β is a fixed, p× 1 vector generally unknown, although in selection index methodology
it is assumed, probably always incorrectly, that it is known.

Z is a known, fixed, n× q matrix.

u is a random, q × 1 vector with null means.

e is a random, n× 1 vector with null means.
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The variance-covariance matrix of u is G, a q × q symmetric matrix that is usually
non-singular. Hereafter for convenience we shall use the notation V ar(u) to mean a
variance-covariance matrix of a random vector.

V ar(e) = R is an n × n, symmetric, usually non-singular matrix. Cov(u, e′) = 0,
that is, all elements of the covariance matrix for u with e are zero in most but not all
applications.

It must be understood that we have hypothesized a population of u vectors from
which a random sample of one has been drawn into the sample associated with the data
vector, y, and similarly a population of e vectors is assumed, and a sample vector has
been drawn with the first element of the sample vector being associated with the first
element of y, etc.

Generally we do not know the values of the individual elements of G and R. We
usually are willing, however, to make assumptions about the pattern of these values. For
example, it is often assumed that all the diagonal elements of R are equal and that all
off-diagonal elements are zero. That is, the elements of e have equal variances and are
mutually uncorrelated. Given some assumed pattern of values of G and R, it is then
possible to estimate these matrices assuming a suitable design (values of X and Z) and
a suitable sampling scheme, that is, guarantee that the data vector arose in accordance
with u and e being random vectors from their respective populations. With the model
just described

E(y) = mean of y = Xβ.

V ar(y) = ZGZ′ + R.

We shall now present a few examples of well known models and show how these can
be formulated by the general model described above. The important advantage to having
one model that includes all cases is that we can thereby present in a condensed manner
the basic methods for estimation, computing sampling variances, testing hypotheses, and
prediction.

1 Simple Regression Model

The simple regression model can be written as follows,

yi = µ + xi α + ei.

This is a scalar model, yi being the ith of n observations. The fixed elements of the model
are µ and α, the latter representing the regression coefficient. The concomitant variable
associated with the ith observation is xi, regarded as fixed and measured without error.
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Note that in conceptual repeated sampling the values of xi remain constant from one
sample to another, but in each sample a new set of ei is taken, and consequently the
values of yi change. Now relative to our general model,

y′ = (y1 y2 ... yn),

β ′ = (µ α),

X′ =

[
1 1 ... 1
x1 x2 ... xn

]
, and

e′ = (e1 e2 ... en)

Zu does not exist in the model. Usually R is assumed to be Iσ2
e in regression models.

2 One Way Random Model

Suppose we have a random sample of unrelated sires from some population of sires and
that these are mated to a sample of unrelated dams with one progeny per dam. The
resulting progeny are reared in a common environment, and one record is observed on
each. An appropriate model would seem to be

yij = µ+ si + eij,

yij being the observation on the jth progeny of the ith sire.

Suppose that there are 3 sires with progeny numbers 3, 2, l respectively. Then y is a
vector with 6 elements.

y′ = (y11 y12 y13 y21 y22 y31),

x′ = (1 1 1 1 1 1),

u′ = (s1 s2 s3), and

e′ = (e11 e12 e13 e21 e22 e23),

V ar(u) = Iσ2
s ,

V ar(e) = Iσ2
e ,

where these two identity matrices are of order 3 and 6, respectively.

Cov(u, e′) = 0.

Suppose next that the sires in the sample are related, for example, sires 2 and 3 are
half-sib progeny of sire l, and all 3 are non-inbred. Then under an additive genetic model
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V ar(u) =

 1 1/2 1/2
1/2 1 1/4
1/2 1/4 1

 σ2
s .

What if the mates are related? Suppose that the numerator relationship matrix, Am,
for the 6 mates is



1 1/2 1/2 0 0 0
0 1 0 0 1/2 1/2

1/2 0 1 1/4 0 0
1/2 0 1/4 1 0 0
0 1/2 0 0 1 1/4
0 1/2 0 0 1/4 1


.

Suppose further that we invoke an additive genetic model with h2 = 1/4. Then

V ar(e) =



1 0 1/30 1/30 0 0
0 1 0 0 1/30 1/30

1/30 0 1 1/60 0 0
1/30 0 1/60 1 0 0

0 1/30 0 0 1 1/60
0 1/30 0 0 1/60 1


σ2
e .

This result is based on σ2
s = σ2

y/16, σ2
e = 15 σ2

y/16, and leads to

V ar(y) = (.25 Ap + .75 I) σ2
y,

where Ap is the relationship matrix for the 6 progeny.

3 Two Trait Additive Genetic Model

Suppose that we have a random sample of 5 related animals with measurements on 2 cor-
related traits. We assume an additive genetic model. Let A be the numerator relationship
matrix of the 5 animals. Let

(
g11 g12

g12 g22

)

4



be the genetic variance-covariance matrix and(
r11 r12

r12 r22

)

be the environmental variance-covariance matrix. Then h2 for trait 1 is g11/(g11+r11), and
the genetic correlation between the two traits is g12/(g11 g22)

1/2.Order the 10 observations,
animals within traits. That is, the first 5 elements of y are the observations on trait 1.
Suppose that traits 1 and 2 have common means µ1, µ2 respectively. Then

X′ =

(
1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1

)
,

and
β′ = (µ1 µ2).

The first 5 elements of u are breeding values for trait 1 and the last 5 are breeding
values for trait 2. Similarly the errors are partitioned into subvectors with 5 elements
each. Then Z = I and

G = V ar(u) =

(
A g11 A g12

A g12 A g22

)
,

R = Var (e) =

(
I r11 I r12

I r12 I r22

)
,

where each I has order, 5.

4 Two Way Mixed Model

Suppose that we have a random sample of 3 unrelated sires and that they are mated to
unrelated dams. One progeny of each mating is obtained, and the resulting progeny are
assigned at random to two different treatments. The table of subclass numbers is

Treatments
Sires 1 2

1 2 1
2 0 2
3 3 0
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Ordering the data by treatments within sires,

y′ =
(
y111 y112 y121 y221 y222 y311 y312 y313

)
.

Treatments are regarded as fixed, and variances of sires and errors are considered to
be unaffected by treatments. Then

u′ =
(
s1 s2 s3 st11 st12 st22 st31

)
.

Z =



1 0 0 1 0 0 0
1 0 0 1 0 0 0
1 0 0 0 1 0 0
0 1 0 0 0 1 0
0 1 0 0 0 1 0
0 0 1 0 0 0 1
0 0 1 0 0 0 1
0 0 1 0 0 0 1


.

V ar(s) = I3 σ
2
s , V ar(st) = I4 σ

2
st, V ar(e) = I8 σ

2
e .

Cov(s, (st′)) = 0.

This is certainly not the only linear model that could be invoked for this design. For
example, one might want to assume that sire and error variances are related to treatments.

5 Equivalent Models

It was stated above that a linear model must describe the mean and the variance-
covariance matrix of y. Given these two, an infinity of models can be written all of
which yield the same first and second moments. These models are called linear equivalent
models.

Let one model be y = Xβ + Zu + e with V ar(u) = G, V ar(e) = R. Let a second
model be y = X∗β∗ + Z∗u∗ + e∗, with V ar(u∗) = G∗, V ar(e∗) = R∗. Then the means
of y under these 2 models are Xβ and X∗β∗ respectively. V ar(y) under the 2 models is

ZGZ′ + R and Z∗G∗Z
′

∗ + R∗.
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Consequently we state that these 2 models are linearly equivalent if and only if

Xβ = X∗β∗ and ZGZ′ + R = Z∗G∗Z
′

∗ + R∗.

To illustrate, Xβ = X∗ β∗ suppose we have a treatment design with 3 treatments
and 2 observations on each. Suppose we write a model

yij = µ+ ti + eij,

then

Xβ =



1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1




µ
t1
t2
t3

 .

An alternative model is

yij = αi + eij,

then

X∗β∗ =



1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1


 α1

α2

α3

 .

Then if we define αi = µ + ti, it is seen that E(y) is the same in the two models.
To illustrate with two models that give the same V ar(y) consider a repeated lactation
model. Suppose we have 3 unrelated, random sample cows with 3, 2, 1 lactation records,
respectively. Invoking a simple repeatability model, that is, the correlation between any
pair of records on the same animal is r, one model ignoring the fixed effects is

yij = ci + eij.

V ar(c) = V ar

 c1
c2
c3

 =

 r 0 0
0 r 0
0 0 r

σ2
y .
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V ar(e) = I6 (1− r) σ2
y.

An alternative for the random part of the model is

yij = eij,

where Zu does not exist.

V ar(ε) = R =



1 r r 0 0 0
r 1 r 0 0 0
r r 1 0 0 0
0 0 0 1 r 0
0 0 0 r 1 0
0 0 0 0 0 1


σ2
y.

Relating the 2 models,

σ2
ε = σ2

c + σ2
e .

Cov(εij, εij, ) = σ2
c for j 6= j′.

We shall see that some models are much easier computationally than others. Also
the parameters of one model can always be written as linear functions of the parameters
of any equivalent model. Consequently linear and quadratic estimates under one model
can be converted by these same linear functions to estimates for an equivalent model.

6 Subclass Means Model

With some models it is convenient to write them as models for the ”smallest” subclass
mean. By ”smallest” we imply a subclass identified by all of the subscripts in the model
except for the individual observations. For this model to apply, the variance-covariance
matrix of elements of e pertaining to observations in the same smallest subclass must
have the form


v c

. . .

c v

 ,
no covariates exist, and the covariances between elements of e in different subclasses must
be zero. Then the model can be written
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ȳ = X̄β + Z̄u + ε.

ȳ is the vector of ”smallest” subclass means. X̄ and Z̄ relate these means to elements
of β and u. The error vector, ε, is the mean of elements of e in the same subclass. Its
variance-covariance matrix is diagonal with the ith diagonal element being

(
v
ni

+ ni−1
ni

c
)
σ2
e ,

where ni is the number of observations in the ith subclass.

7 Determining Possible Elements In The Model

Henderson(1959) described in detail an algorithm for determining the potential lines of an
ANOVA table and correspondingly the elements of a linear model. First, the experiment
is described in terms of two types of factors, namely main factors and nested factors. By
a main factor is meant a classification, the ”levels” of which are identified by a single
subscript. By a nesting factor is meant one whose levels are not completely identified
except by specifying a main factor or a combination of main factors within which the
nesting factor is nested. Identify each of the main factors by a single unique letter, for
example, B for breeds and T for treatments. Identify nesting factors by a letter followed by
a colon and then the letter or letters describing the main factor or factors within which it is
nested. For example, if sires are nested within breeds, this would be described as S:B. On
the other hand, if a different set of sires is used for each breed by treatment combination,
sires would be identified as S:BT. To determine potential 2 factor interactions combine
the letters to the left of the colon (for a main factor a colon is implied with no letters
following). Then combine the letters without repetition to the right of the colon. If no
letter appears on both the right and left of the colon this is a valid 2 factor interaction.
For example, factors are A,B,C:B. Two way combinations are AB, AC:B, BC:B. The third
does not qualify since B appears to the left and right of the colon. AC:B means A by
C interaction nested within B. Three factor and higher interactions are determined by
taking all possible trios and carrying out the above procedure. For example, factors are
(A, D, B:D, C:D). Two factor possibilities are (AD, AB:D, AC:D, DB:D, DC:D, BC:D).
The 4th and 5th are not valid. Three factor possibilities are (ADB:D, ADC:D, ABC:D,
DBC:D). None of these is valid except ABC:D. The four factor possibility is ADBC:D,
and this is not valid.

Having written the main factors and interactions one uses each of these as a subvector
of either β or u. The next question is how to determine which. First consider main factors
and nesting factors. If the levels of the factor in the experiment can be regarded as a
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random sample from some population of levels, the levels would be a subvector of u. With
respect to interactions, if one or more letters to the left of the colon represent a factor in
u, the interaction levels are subvectors of u. Thus interaction of fixed by random factors
is regarded as random, as is the nesting of random within fixed. As a final step we decide
the variance-covariance matrix of each subvector of u, the covariance between subvectors
of u, and the variance- covariance matrix of (u, e). These last decisions are based on
knowledge of the biology and the sampling scheme that produced the data vector.

It seems to me that modelling is the most important and most difficult aspect of
linear models applications. Given the model everything else is essentially computational.
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Chapter 2
Linear Unbiased Estimation

C. R. Henderson

1984 - Guelph

We are interested in linear unbiased estimators of β or of linear functions of β, say
k′β. That is, the estimator has the form, a′y, and E (a′y) = k′β, if possible. It is
not necessarily the case that k′β can be estimated unbiasedly. If k′β can be estimated
unbiasedly, it is called estimable. How do we determine estimability?

1 Verifying Estimability

E(a′y) = a′Xβ.

Does this equal k′β? It will for any value of β if and only if a′X = k′.

Consequently, if we can find any a such that a′X = k′, then k′β is estimable. Let
us illustrate with

X =


1 1 2
1 2 4
1 1 2
1 3 6

 .

• Is β1 estimable, that is, (1 0 0) β estimable? Let a′ = (2 − 1 0 0) then

a′X = (1 0 0) = k′.

Therefore, k′β is estimable.

• Is (0 1 2) β estimable? Let a′ = (−1 1 0 0) then

a′X = (0 1 2) = k′.

Therefore, it is estimable.

• Is β2 estimable? No, because no a′ exists such that a′X = (0 1 0).

Generally it is easier to prove by the above method that an estimable function is in-
deed estimable than to prove that a non-estimable function is non-estimable. Accordingly,
we consider other methods for determining estimability.

1



1.1 Second Method

Partition X as follows with possible re-ordering of columns.

X = (X1 X1L),

where X1 has r linearly independent columns. Remember that X is n× p with rank = r.
The dimensions of L are r × (p− r).

Then k′β is estimable if and only if

k
′

= (k
′

1 k
′

1L),

where k
′
1 has r elements, and k

′
1L has p− r elements. Consider the previous example.

X1 =


1 1
1 2
1 1
1 3

 , and L =

(
0
2

)
.

• Is (1 0 0) β estimable?

k
′

1 = (1 0), k
′

1L = (1 0)

(
0
2

)
= 0.

Thus k′ = (1 0 0), and the function is estimable.

• Is (0 1 2) β estimable?

k
′

1 = (0 1), and k
′

1L = (0 1)

(
0
2

)
= 2.

Thus k′ = (0 1 2), and the function is estimable.

• Is (0 1 0) β estimable?

k
′

1 = (0 1), and k
′

1L = (0 1)

(
0
2

)
= 2.

Thus (k
′
1 k

′
1L). = (0 1 2) 6= (0 1 0). The function is not estimable.

1.2 Third Method

A third method is to find a matrix, C, of order p× (p− r) and rank, p− r, such that

XC = 0.
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Then k′β is estimable if and only if

k′C = 0.

In the example 
1 1 2
1 2 4
1 1 2
1 3 6


 0

2
−1

 =


0
0
0
0

 .

• Therefore (1 0 0) β is estimable because

(1 0 0)

 0
2
−1

 = 0.

• So is (0 1 2) β because

(0 1 2)

 0
2
−1

 = 0.

• But (0 1 0) β is not because

(0 1 0)

 0
2
−1

 = 2 6= 0.

1.3 Fourth Method

A fourth method is to find some g-inverse of X′X, denoted by (X′X)−. Then k′β is
estimable if and only if

k′(X′X)− X′X = k′.

A definition of and methods for computing a g-inverse are presented in Chapter 3.

In the example

X′X =

 4 7 14
7 15 30

14 30 60

 ,
and a g-inverse is

1

11

 15 −7 0
−7 4 0

0 0 0

 .
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• (1 0 0) (X′X)− X′X = (1 0 0). Therefore (1 0 0) β is estimable.

• (0 1 2) (X′X)− X′X = (0 1 2). Therefore (0 1 2) β is estimable.

• (0 1 0) (X′X)− X′X = (0 1 2). Therefore (0 1 0) β is not estimable.

• Related to this fourth method any linear function of

(X′X)− X′Xβ

is estimable.

If rank (X) = p = the number of columns in X, any linear function of β is estimable.
In that case the only g-inverse of X′X is (X′X)−1, a regular inverse. Then by the fourth
method

k′ (X′X)− X′X = k′(X′X)−1 X′X = k′ I = k′.

Therefore, any k′β is estimable.

There is an extensive literature on generalized inverses. See for example, Searle
(1971b, 1982), Rao and Mitra (1971) and Harville(1999??).
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Chapter 3
Best Linear Unbiased Estimation

C. R. Henderson

1984 - Guelph

In Chapter 2 we discussed linear unbiased estimation of k′β, having determined
that it is estimable. Let the estimate be a′y, and if k′β is estimable, some a exists such
that

E(a′y) = k′β.

Assuming that more than one a gives an unbiased estimator, which one should be chosen?
The most common criterion for choice is minimum sampling variance. Such an estimator
is called the best linear unbiased estimator (BLUE).

Thus we find a′ such that E(a′y) = k′β and, in the class of such estimators, has
minimum sampling variance. Now

V ar(a′y) = a′(V ar(y))a = a′Va,

where V ar(y) = V, assumed known, for the moment.

For unbiasedness we require a′X = k′. Consequently we find a that minimizes a′Va
subject to a′X = k′. Using a Lagrange multiplier, θ, and applying differential calculus
we need to solve for a in equations(

V X
X′ 0

)(
a
θ

)
=

(
0
k

)
.

This is a consistent set of equations if and only if k′β is estimable. In that case the
unique solution to a is

V−1X(X′V−1X)−k.

A solution to θ is
−(X′V−1X)−k,

and this is not unique when X and consequently X′V−1X is not full rank. Nevertheless
the solution to a is invariant to the choice of a g-inverse of X′V−1X. Thus, BLUE of k′β
is

k′(X′V−1X)−X′V−1y.

But let
βo = (X′V−1X)−X′V−1y,
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where βo is any solution to
(X′V−1X)βo = X′V−1y

known as generalized least squares (GLS) equations, Aitken (1935). Superscript 0 is used
to denote some solution, not a unique solution. Therefore BLUE of k′β is k′βo.

Let us illustrate with

X =


1 1 2
1 2 4
1 1 2
1 3 6

 ,
and y′ = (5 2 4 3). Suppose V ar(y) = Iσ2

e . Then the GLS equations are

σ−2
e

 4 7 14
7 15 30

14 30 60

 βo =

 14
22
44

σ−2
e .

A solution is
(βo)′ = (56 − 10 0)/11.

Then BLUE of (0 1 2)β, which has been shown to be estimable, is

(0 1 2)(56 − 10 0)′/11 = −10/11.

Another solution to βo is
(56 0 − 5)′/11.

Then BLUE of (0 1 2)β is − 10/11, the same as the other solution to βo.

1 Mixed Model Method For BLUE

One frequent difficulty with GLS equations, particularly in the mixed model, is that
V = ZGZ′ + R is large and non-diagonal. Consequently V−1 is difficult or impossible to
compute by usual methods. It was proved by Henderson et al. (1959) that

V−1 = R−1−R−1Z(Z′R−1Z + G−1)−1Z′R−1.

Now if R−1 is easier to compute than V−1, as is often true, if G−1 is easy to com-
pute, and (Z′R−1Z + G−1)−1 is easy to compute, this way of computing V−1 may have
important advantages. Note that this result can be obtained by writing equations, known
as Henderson’s mixed model equations (1950) as follows,(

X′R−1X X′R−1Z
Z′R−1X Z′R−1Z + G−1

)(
βo

û

)
=

(
X′R−1y
Z′R−1y

)
.
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Note that if we solve for û in the second equation and substitute this in the first we
get

X′[R−1−R−1Z(Z′R−1Z + G−1)−1Z′R−1]Xβo

= X′[R−1−R−1Z(Z′R−1Z + G−1)−1Z′R−1]y,

or from the result for V−1

X′V−1Xβo = X′V−1y.

Thus, a solution to βo in the mixed model equations is a GLS solution. An interpre-
tation of û is given in Chapter 5. The mixed model equations are often well suited to an
iterative solution. Let us illustrate the mixed model method for BLUE with

X =


1 1
1 2
1 1
1 3

 , Z =


1 0
1 0
1 0
0 1

 , G =

(
.1 0
0 .1

)
,

and
R = I, y′ = [5 4 3 2].

Then the mixed model equations are
4 7 3 1
7 15 4 3
3 4 13 0
1 3 0 11


(

βo

û

)
=


14
22
12
2

 .
The solution is [286 − 50 2 − 2]’/57. In this case the solution is unique because X has
full column rank.

Now consider a GLS solution.

V = [ZGZ′ + R] =


1.1 .1 .1 0
.1 1.1 .1 0
.1 .1 1.1 0
0 0 0 1.1

 .

V−1 =
1

143


132 −11 −11 0
−11 132 −11 0
−11 −11 132 0

0 0 0 130

 .
Then X′V−1Xβo = X′V−1y becomes

1

143

(
460 830
830 1852

)
βo =

1

143

(
1580
2540

)
.

The solution is (286 − 50)/57 as in the mixed model equations.
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2 Variance of BLUE

Once having an estimate of k′β we should like to know its sampling variance. Consider a
set of estimators, K′βo.

V ar(K′βo) = V ar[K′(X′V−1X)−X′V−1y]

= K′(X′V−1X)−X′V−1VV−1X(X′V−1X)−K

= K′(X′V−1X)−K provided K′β is estimable.

The variance is invariant to the choice of a g-inverse provided K′β is estimable. We
can also obtain this result from a g-inverse of the coefficient matrix of the mixed model
equations. Let a g-inverse of this matrix be(

C11 C12

C21 C22

)
.

Then
V ar(K′βo) = K′C11K.

This result can be proved by noting that

C11 = (X′[R−1−R−1Z(Z′R−1Z + G−1)−1Z′R−1]X)−

= (X′V−1X)−.

Using the mixed model example, let

K′ =

(
1 0
0 1

)
.

A g-inverse (regular inverse) of the coefficient matrix is

1

570


926 −415 −86 29
−415 230 25 −25
−86 25 56 1

29 −25 1 56

 .
Then

V ar(K′βo) =
1

570

(
926 −415
−415 230

]
.

The same result can be obtained from the inverse of the GLS coefficient matrix
because (

143−1

(
460 830
830 1852

) )−1

=
1

570

(
926 −415
−415 230

)
.
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3 Generalized Inverses and Mixed Model Equations

Earlier in this chapter we found that BLUE of K′β, estimable, is K′βo, where βo is any
solution to either GLS or mixed model equations. Also the sampling variance requires a g-
inverse of the coefficient matrix of either of these sets of equations. We define (X′V−1X)−

as a g-inverse of X′V−1X. There are various types of generalized inverses, but the one we
shall use is defined as follows.

A− is a g-inverse of A provided that

A A−A = A.

Then if we have a set of consistent equations,

A p = z,

a solution to p is
A−z.

We shall be concerned, in this chapter, only with g-inverses of singular, symmetric
matrices characteristic of GLS and mixed model equations.

3.1 First type of g-inverse

Let W be a symmetric matrix with order, s, and rank, t < s. Partition W with possible
re-ordering of rows (and the same re-ordering of columns) as

W =

(
W11 W12

W
′
12 W22

)
,

where W11 is a non-singular matrix with order t. Then W − =

(
W−1

11 0
0 0

)
.

It is of interest that for this type of W− it is true that W−W W− = W− as well as
W W−W = W. This is called a reflexive g-inverse. To illustrate, suppose W is a GLS
coefficient matrix,

W =


4 7 8 15
7 15 17 32
8 17 22 39

15 32 39 71

 .
This matrix has rank 3 and the upper 3× 3 is non-singular with inverse

30−1

 41 −18 −1
−18 24 −12
−1 −12 11

 .
5



Therefore a g-inverse is

30−1


41 −18 −1 0
−18 24 −12 0
−1 −12 11 0

0 0 0 0

 .
Another g-inverse of this type is

30−1


41 −17 0 −1
−17 59 0 −23

0 0 0 0
−1 −23 0 11

 .
This was obtained by inverting the full rank submatrix composed of rows (and columns)
1, 2, 4 of W. This type of g-inverse is described in Searle (1971b).

In the mixed model equations a comparable g-inverse is obtained as follows. Partition
X′R−1X with possible re-ordering of rows (and columns) as(

X
′
1R
−1X1 X

′
1R
−1X2

X
′
2R
−1X1 X

′
2R
−1X2

)

so that X
′
1R
−1X1 has order r and is full rank. Compute(

X
′
1R
−1X1 X

′
1R
−1Z

Z′R−1X1 Z′R−1Z + G−1

)−1

=

(
C00 C02

C
′
02 C22

)
.

Then a g-inverse of the coefficient matrix is

 C00 0 C02

0 0 0
C

′
02 0 C22

 . We illustrate with a

mixed model coefficient matrix as follows.
5 8 −8 3 2
8 16 −16 4 4
−8 −16 16 −4 −4

3 4 −4 8 0
2 4 −4 0 7


where X has 3 columns and Z has 2. Therefore X′R−1X is the upper 3 x 3 submatrix.
It has rank 2 because the 3rd column is the negative of the second. Consequently find a
g-inverse by inverting the matrix with the 3rd row and column deleted. This gives

560−1


656 −300 0 −96 −16
−300 185 0 20 −20

0 0 0 0 0
−96 20 0 96 16
−16 −20 0 16 96

 .
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With this type of g-inverse the solution to βo is (βo
1 0)′, where βo

1 has r elements. Only
the first p rows of the mixed model equations contribute to lack of rank of the mixed
model matrix. The matrix has order p + q and rank r + q, where r = rank of X, p =
columns in X, and q = columns in Z.

3.2 Second type of g-inverse

A second type of g-inverse is one which imposes restrictions on the solution to βo. Let
M′β be a set of p−r linearly independent, non-estimable functions of β. Then a g-inverse

for the GLS matrix is obtained as follows

(
X′V−1X M

M′ O

)−1

=

(
C11 C12

C
′
12 C22

)
.

C11 is a reflexive g-inverse of X′V−1X. This type of solution is described in Kempthorne
(1952). Let us illustrate GLS equations as follows.

11 5 6 3 8
5 5 0 2 3
6 0 6 1 5
3 2 1 3 0
8 3 5 0 8

 βo =


12
7
5
8
4

 .

This matrix has order 5 but rank only 3. Two independent non-estimable functions are
needed. Among others the following qualify(

0 1 1 0 0
0 0 0 1 1

)
β.

Therefore we invert 

11 5 6 3 8 0 0
5 5 0 2 3 1 0
6 0 6 1 5 1 0
3 2 1 3 0 0 1
8 3 5 0 8 0 1
0 1 1 0 0 0 0
0 0 0 1 1 0 0


,

which is

244−1



28 −1 1 13 −13 −122 −122
−1 24 −24 −7 7 122 0

1 −24 24 7 −7 122 0
13 −7 7 30 −30 0 122
−13 7 −7 −30 30 0 122
−122 122 122 0 0 0 0
−122 0 0 122 122 0 0


.
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The upper 5 x 5 submatrix is a g-inverse. This gives a solution

βo = (386 8 − 8 262 − 262)′/244.

A corresponding g-inverse for the mixed model is as follows X′R−1X X′R−1Z M
Z′R−1X Z′R−1Z + G−1 0

M′ 0 0


−1

=

 C11 C12 C13

C
′
12 C22 C23

C
′
13 C23 C33

 .
Then (

C11 C12

C
′
12 C22

)
is a g-inverse of the mixed model coefficient matrix. The property of βo coming from this
type of g-inverse is

M′βo = 0.

3.3 Third type of g-inverse

A third type of g-inverse uses M of the previous section as follows. (X ’V −1X +
MM′)−1 = C. Then C is a g-inverse of X′V−1X. In this case C(X′V−1X)C 6= C. This
is described in Rao and Mitra (1971).

We illustrate with the same GLS matrix as before and

M′ =

(
0 1 1 0 0
0 0 0 1 1

)

as before.

(X′V−1X + MM′) =


11 5 6 3 8
5 6 1 2 3
6 1 7 1 5
3 2 1 4 1
8 3 5 1 9


with inverse

244−1


150 −62 −60 −48 −74
−62 85 37 −7 7
−60 37 85 7 −7
−48 −7 7 91 31
−74 7 −7 31 91

 ,

which is a g-inverse of the GLS matrix. The resulting solution to βo is the same as the
previous section.
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The corresponding method for finding a g-inverse of the mixed model matrix is(
X′R−1X + MM′ X′R−1Z
Z′R−1X Z′R−1Z + G−1

)−1

= C. Then C is a g-inverse. The property

of the solution to βo is
M′βo = 0.

4 Reparameterization

An entirely different method for dealing with the not full rank X problem is reparameter-
ization. Let K′β be a set of r linearly independent, estimable functions of β . Let α̂ be
BLUE of K′β. To find α̂ solve (K’K)−1K′X′V−1XK(K′K)−1α̂ = (K′K)−1K′X′V−1y.
α̂ has a unique solution, and the regular inverse of the coefficient matrix is V ar(α̂). This
corresponds to a model

E(y) = X K(K′K)−1α.

This method was suggested to me by Gianola (1980).

From the immediately preceding example we need 3 estimable functions. An inde-
pendent set is  1 1/2 1/2 1/2 1/2

0 1 −1 0 0
0 0 0 1 −1

 .
The corresponding GLS equations are 11 −.50 −2.50

−.5 2.75 .75
−2.5 .75 2.75

 α̂ =

 12
1
2

 .
The solution is

α̂′ = (193 8 262)/122.

This is identical to  1 1/2 1/2 1/2 1/2
0 1 −1 0 0
0 0 0 1 −1

βo

from the previous solution in which(
0 1 1 0 0
0 0 0 1 1

)
βo

was forced to equal 0.
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The corresponding set of equations for mixed models is(
(K′K)−1K′X′R−1XK(K′K)−1 (K′K)−1K′X′R−1Z
Z′R−1XK(K′K)−1 Z′R−1Z + G−1

)
(

α̂
û

)
=

(
(K′K)−1K′X′R−1y
Z′R−1y

)
.

5 Precautions in Solving Equations

Precautions must be observed in the solution to equations, especially if there is some
doubt about the rank of the matrix. If a supposed g-inverse is calculated, it may be
advisable to check that AA−A = A. Another check is to regenerate the right hand sides
as follows. Let the equations be

Cα̂ = r.

Having computed α̂, compute Cα̂ and check that it is equal, except for rounding error,
to r.
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Chapter 4
Test of Hypotheses

C. R. Henderson

1984 - Guelph

Much of the statistical literature for many years dealt primarily with tests of hypothe-
ses ( or tests of significance). More recently increased emphasis has been placed, properly
I think, on estimation and prediction. Nevertheless, many research workers and certainly
most editors of scientific journals insist on tests of significance. Most tests involving linear
models can be stated as follows. We wish to test the null hypothesis,

H
′

0β = c0,

against some alternative hypothesis, most commonly the alternative that β can have any
value in the parameter space. Another possibility is the general alternative hypothesis,

H
′

aβ = ca.

In both of these hypotheses there may be elements of β that are not determined
by H. These elements are assumed to have any values in the parameter space. H

′
0 and

H
′
a are assumed to have full row rank with m and a rows respectively. Also r ≥ m > a.

Under the unrestricted hypothesis a = 0.

Two important restrictions are required logically for H0 and Ha. First, both H
′
0β

and H
′
aβ must be estimable. It hardly seems logical that we could test hypotheses about

functions of β unless we can estimate these functions. Second, the null hypothesis must
be contained in the alternative hypothesis. That is, if the null is true, the alternative
must be true. For this to be so we require that H

′
a can be written as MH

′

0 and ca as Mc0

for some M.

1 Equivalent Hypotheses

It should be recognized that there are an infinity of hypotheses that are equivalent to
H

′
0β = c. Let P be an m ×m, non-singular matrix. Then PH

′

0β = Pc is equivalent to
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H
′
0β = c. For example, consider a fixed model

yij = µ+ ti + eij, i = 1, 2, 3.

A null hypothesis often tested is (
1 0 −1
0 1 −1

)
t = 0.

An equivalent hypothesis is (
2/3 −1/3 −1/3

−1/3 2/3 −1/3

)
t = 0.

To convert the first to the second pre-multiply(
1 0 −1
0 1 −1

)
by

(
2/3 −1/3

−1/3 2/3

)
.

As an example of use of H
′
a consider a type of analysis sometimes recommended for

a two way fixed model without interaction. Let the model be yijk = µ + ai + bj + eijk,
where i = 1, 2, 3 and j = 1, 2, 3, 4. The lines of the ANOVA table could be as
follows.

Sum of Squares
Rows ignoring columns (column differences regarded as non-existent),
Columns with rows accounted for,
Residual.

The sum of these 3 sums of squares is equal to (y′y− correction factor). The first
sum of squares is represented as testing the null hypothesis:

0 1 0 −1 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 0 0 −1
0 0 0 0 0 1 0 −1
0 0 0 0 0 0 1 −1

 β = 0.

and the alternative hypothesis: 0 0 0 0 1 0 0 −1
0 0 0 0 0 1 0 −1
0 0 0 0 0 0 1 −1

 β = 0.

The second sum of squares represents testing the null hypothesis: 0 0 0 0 1 0 0 −1
0 0 0 0 0 1 0 −1
0 0 0 0 0 0 1 −1

 β = 0.

and the alternative hypothesis: entire parameter space.

2



2 Test Criteria

2.1 Differences between residuals

Now it is assumed for purposes of testing hypotheses that y has a multivariate normal
distribution. Then it can be proved by the likelihood ratio method of testing hypotheses,
Neyman and Pearson (1933), that under the null hypothesis the following quantity is
distributed as χ2.

(y −Xβ0)
′V−1(y −Xβ0) − (y −Xβa)′V−1(y −Xβa). (1)

β0 is a solution to GLS equations subject to the restriction H
′
0β0 = c0. β0 can be

found by solving (
X′V−1X H0

H
′
0 0

)(
β0

θ0

)
=

(
X′V−1y

c0

)
or by solving the comparable mixed model equations X′R−1X X′R−1Z H0

Z′R−1X Z′R−1Z + G−1 0
H

′
0 0 0


 β0

u0

θ0

 =

 X′R−1y
Z′R−1y

c0

 .
βa is a solution to GLS or mixed model equations with restrictions, H

′
aβa = ca

rather than H
′
0β0 = c0.

In case the alternative hypothesis is unrestricted (β can have any values), that
is, βa is a solution to the unrestricted GLS or mixed model equations. Under the null
hypothesis (1) is distributed as χ2 with (m− a) degrees of freedom, m being the number
of rows (independent) in H

′
0, and a being the number of rows (independent) in H

′
a. If the

alternative hypothesis is unrestricted, a = 0. Having computed (1) this value is compared
with values of χ2

m−a for the chosen level of significance.

Let us illustrate with a model

y = µ+ ti + eij

µ, ti fixed, i = 1, 2, 3

R = V ar(e) = 5I.

Suppose that the number of observations on the levels of ti are 4, 3, 2, and the
treatment totals are 25, 15, 9 with individual observations, (6, 7, 8, 4, 4, 5, 6, 5, 4). We
wish to test that the levels of ti are equal, which can be expressed as(

0 1 0 −1
0 0 1 −1

)
(µ t1 t2 t3)

′ = (0 0)′.
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We use as the alternative hypothesis the unrestricted hypothesis. The GLS equations
under the restriction are

.2



9 4 3 2 0 0
4 4 0 0 1 0
3 0 3 0 0 1
2 0 0 2 −1 −1
0 1 0 −1 0 0
0 0 1 −1 0 0


(

β0

θ0

)
= .2



49
25
15
9
0
0


.

A solution is
β

′

o = (49 0 0 0)/9,θ
′

o = (29 − 12)/9.

The GLS equations with no restrictions are

.2


9 4 3 2
4 4 0 0
3 0 3 0
2 0 0 2

 (
βa

)
= .2


49
25
15
9

 .
A solution is βa = (0 25 20 18)/4.

(y −Xβo)
′ = (5 14 23 − 13 − 13 − 4 5 − 4 − 13)/9.

(y −Xβo)
′V−1(y −Xβo) = 146/45.

(y −Xβa)′ = [−1, 3, 7, −9, −4, 0, 4, 2, −2]/4.

(y −Xβa)′V−1(y −Xβa) = 9/4.

The difference is 146
45

− 9
4

= 179
180
.

2.2 Differences between reductions

Two easier methods of computation that lead to the same result will now be presented.
The first, described in Searle (1971b), is

β
′

aX
′V−1y + θ

′

aca − β
′

oX
′V−1y − θ

′

oco. (2)

The first 2 terms are called reduction in sums of squares under the alternative hypothesis.
The last two terms are the negative of the reduction in sum of squares under the null
hypothesis. In our example

β
′

aX
′V−1y + θ

′

aca = 1087/20.

β
′

oX
′V−1y + θ

′

oco = 2401/45.
1087

20
− 2401

45
=

179

180
as before.
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If the mixed model equations are used, (2) can be computed as

β
′

aX
′R−1y + u

′

aZ
′R−1y + θ

′

aca − β
′

oX
′R−1y − u

′

oZ
′R−1y − θ

′

oco. (3)

2.3 Method based on variances of linear functions

A second easier method is

(H
′

oβ
o − co)

′ [H
′

o(X
′V−1X)−Ho]

−1(H
′

oβ
o − co)

− (H
′

aβ
o − ca)′ [H

′

a(X′V−1X)−Ha]−1(H
′

aβ
o − ca). (4)

If H
′
aβ is unrestricted the second term of (4) is set to 0. Remember that βo is a solu-

tion in the unrestricted GLS equations. In place of (X′V−1X)− one can substitute the
corresponding submatrix of a g-inverse of the mixed model coefficient matrix.

This is a convenient point to prove that an equivalent hypothesis, P(H′β − c) = 0
gives the same result as H′β − c, remembering that P is non-singular. The quantity
corresponding to (4) for P (H′β − c) is

(H′βo − c)′P′[PH′(X′V−1X)−HP′]−1P(H′β − c)

= (H′βo − c)′P′(P′)−1[H′(X′V−1X)−H]−1P−1P(H′βo − c)

= (H′βo − c)′[H′(X′V−1X)H]−1(H′βo − c),

which proves the equality of the two equivalent hypotheses.

Let us illustrate (3) with our example(
0 1 0 −1
0 0 1 −1

)
βo =

(
0 1 0 −1
0 0 1 −1

)
(0 25 20 18)′/4 =

(
7
2

)
/4.

A g-inverse of X′V−1X is 
0 0 0 0
0 15 0 0
0 0 20 0
0 0 0 30

 /12.

H
′

0 (X′V−1X)−H0 =

(
45 30
30 50

)
/12.
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The inverse of this is (
20 −12

−12 18

)
/45.

Then
1

4
(7 2)

(
20 −12

−12 18

)
1

45

(
7
2

)
1

4
=

179

180
as before.

The d.f. for χ2 are 2 because H
′
0 has 2 rows and the alternative hypothesis is unrestricted.

2.4 Comparison of reductions under reduced models

Another commonly used method is to compare reductions in sums of squares resulting
from deletions of different subvectors of β from the reduction. The difficulty with this
method is the determination of what hypothesis is tested by the difference between a pair
of reductions. It is not true in general, as sometimes thought, that Red(β) − Red(β1)
tests the hypothesis that β2 = 0, where β′ = (β

′

1 β
′

2). In most designs, β2 is not
estimable. We need to determine what H′β imposed on a solution will give the same
reduction in sum of squares as does Red(β1).

In the latter case we solve

(X
′

1V
−1X1) βo

1 = X
′

1V
−1y

and then
Reduction = (βo

1)
′X

′

1V
−1y. (5)

Consider a hypothesis, H′β2 = 0. We could solve X
′
1V
−1X1 X

′
1V
−1X2 0

X
′
2V
−1X1 X

′
2V
−1X2 H

0 H′ 0


 βo

1

βo
2

θ

 =

 X
′
1V
−1y

X
′
2V
−1y

0

 . (6)

Then
Reduction = (βo

1)
′X

′

1V
−1y + (βo

2)
′X

′

2V
−1y. (7)

Clearly (7) is equal to (5) if a solution to (6) is βo
2 = 0, for then

βo
1 = (X

′

1V
−1X1)

−X
′

1V
−1y.

Consequently in order to determine what hypothesis is implied when β2 is deleted
from the model, we need to find some H ′β2 = 0 such that a solution to (6) is βo

2 = 0.

We illustrate with a two way fixed model with interaction. The numbers of observa-
tions per subclass are (

3 2 1
1 2 5

)
.
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The subclass totals are (
6 2 2
3 5 9

)
.

An analysis sometimes suggested is

Red(µ, r, c)−Red(µ, c) to test rows.

Red(full model)−Red(µ, r, c) to test interaction.

The least squares equations are

14 6 8 4 4 6 3 2 1 1 2 5
6 0 3 2 1 3 2 1 0 0 0

8 1 2 5 0 0 0 1 2 5
4 0 0 3 0 0 1 0 0

4 0 0 2 0 0 2 0
6 0 0 1 0 0 5

3 0 0 0 0 0
2 0 0 0 0

1 0 0 0
1 0 0

2 0
5



βo =



27
10
17
9
7

11
6
2
2
3
5
9


A solution to these equations is

[0, 0, 0, 0, 0, 0, 2, 1, 2, 3, 2.5, 1.8],

which gives a reduction of 55.7, the full model reduction. A solution when interaction
terms are deleted is

[1.9677, −.8065, 0, .8871, .1855, 0]

giving a reduction of 54.3468. This corresponds to an hypothesis,(
1 0 −1 −1 0 1
0 1 −1 0 −1 1

)
rc = 0.

When this is included as a Lagrange multiplier as in (6), a solution is

[1.9677, −.8065, 0, .8871, .1855, 0, 0, 0, 0, 0, 0, 0, −.1452, −.6935].

Note that (rc)o = 0, proving that dropping rc corresponds to the hypothesis stated
above. The reduction again is 54.3468.

When r and rc are dropped from the equations, a solution is

[0, 2.25, 1.75, 1.8333]
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giving a reduction of 52.6667. This corresponds to an hypothesis 3 −3 1 1 1 −1 −1 −1
0 0 1 0 −1 −1 0 1
0 0 0 1 −1 0 −1 1

( r
rc

)
= 0.

When this is added as a Lagrange multiplier, a solution is

[2.25, 0, 0, 0, −.5, −.4167, 0, 0, 0, 0, 0, 0, −.6944, −.05556, −.8056].

Note that ro and rco are null, verifying the hypothesis. The reduction again is 52.6667.
Then the tests are as follows:

Rows assuming rc non-existent = 54.3468 - 52.6667.

Interaction = 55.7 - 54.3468.
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Chapter 5
Prediction of Random Variables

C. R. Henderson

1984 - Guelph

We have discussed estimation of β, regarded as fixed. Now we shall consider a rather
different problem, prediction of random variables, and especially prediction of u. We
can also formulate this problem as estimation of the realized values of random variables.
These realized values are fixed, but they are the realization of values from some known
population. This knowledge enables better estimates (smaller mean squared errors) to
be obtained than if we ignore this information and estimate u by GLS. In genetics the
predictors of u are used as selection criteria. Some basic results concerning selection are
now presented.

Which is the more logical concept, prediction of a random variable or estimation of
the realized value of a random variable? If we have an animal already born, it seems
reasonable to describe the evaluation of its breeding value as an estimation problem. On
the other hand, if we are interested in evaluating the potential breeding value of a mating
between two potential parents, this would be a problem in prediction. If we are interested
in future records, the problem is clearly one of prediction.

1 Best Prediction

Let ŵ = f(y) be a predictor of the random variable w. Find f(y) such that E(ŵ−w)2

is minimum. Cochran (1951) proved that

f(y) = E(w | y). (1)

This requires knowing the joint distribution of w and y, being able to derive the condi-
tional mean, and knowing the values of parameters appearing in the conditional mean.
All of these requirements are seldom possible in practice.

Cochran also proved in his 1951 paper the following important result concerning selec-
tion. Let p individuals regarded as a random sample from some population as candidates
for selection. The realized values of these individuals are w1, . . . wp, not observable. We
can observe yi, a vector of records on each. (wi,yi) are jointly distributed as f(w,y) inde-
pendent of (wj,yj). Some function, say f(yi), is to be used as a selection criterion and the
fraction, α, with highest f(yi) is to be selected. What f will maximize the expectation

1



of the mean of the associated wi? Cochran proved that E(w | y) accomplishes this goal.
This is a very important result, but note that seldom if ever do the requirements of this
theorem hold in animal breeding. Two obvious deficiencies suggest themselves. First, the
candidates for selection have differing amounts of information (number of elements in y
differ). Second, candidates are related and consequently the yi are not independent and
neither are the wi.

Properties of best predictor

1. E(ŵi) = E(wi). (2)

2. V ar(ŵi − wi) = V ar(w | y)

averaged over the distribution of y. (3)

3. Maximizes rŵw for all functions of y. (4)

2 Best Linear Prediction

Because we seldom know the form of distribution of (y, w), consider a linear predictor
that minimizes the squared prediction error. Find ŵ = a′y + b, where a′ is a vector and
b a scalar such that E(ŵ − w)2 is minimum. Note that in contrast to BP the form of
distribution of (y, w) is not required. We shall see that the first and second moments are
needed.

Let

E(w) = γ,

E(y) = α,

Cov(y, w) = c, and

V ar(y) = V.

Then

E(a′y + b− w)2 = a′Va− 2a′c + a′αα′a + b2

+ 2a′αb− 2a′αγ − 2bγ + V ar(w) + γ2.

Differentiating this with respect to a and b and equating to 0(
V +αα′ α
α′ 1

)(
a
b

)
=

(
c +αγ
γ

)
.

The solution is
a = V−1c, b = γ −α′V−1c. (5)

2



Thus
ŵ = γ + c′V−1(y −α).

Note that this is E(w | y) when y, w are jointly normally distributed. Note also that BLP
is the selection index of genetics. Sewall Wright (1931) and J.L. Lush (1931) were using
this selection criterion prior to the invention of selection index by Fairfield Smith (1936).
I think they were invoking the conditional mean under normality, but they were not too
clear in this regard.

Other properties of BLP are unbiased, that is

E(ŵ) = E(w). (6)

E(ŵ) = E[γ + c′V−1(y −α)]

= γ + c′V−1(α−α)

= γ = E(w).

V ar(ŵ) = V ar(c′V−1y) = c′V−1V V−1c = c′V−1c. (7)

Cov(ŵ, w) = c′V−1Cov(y, w) = c′V−1c = V ar(ŵ) (8)

V ar(ŵ − w) = V ar(w)− V ar(ŵ) (9)

In the class of linear functions of y, BLP maximizes the correlation,

rŵw = a′c/[a′Va V ar(w)].5. (10)

Maximize log r.
log r = log a′c− .5 log [a′Va]− .5 log V ar(w).

Differentiating with respect to a and equating to 0.

Va

a′Va
=

c

a′c
or Va = c

V ar(ŵ)

Cov(ŵ, w)
.

The ratio on the right does not affect r. Consequently let it be one. Then a = V−1c.
Also the constant, b, does not affect the correlation. Consequently, BLP maximizes r.

BLP of m′w is m′ŵ, where ŵ is BLP of w. Now w is a vector with E(w) = γ and
Cov(y,w′) = C. Substitute the scalar, m′w for w in the statement for BLP. Then BLP
of

m′w = m′γ + m′C′V−1(y −α)

= m′[γ + CV−1(y −α)]

= m′ŵ (11)

because
ŵ = γ + C′V−1(y −α).
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In the multivariate normal case, BLP maximizes the probability of selecting the better
of two candidates for selection, Henderson (1963). For fixed number selected, it maximizes
the expectation of the mean of the selected ui, Bulmer (1980).

It should be noted that when the distribution of (y, w) is multivariate normal, BLP
is the mean of w given y, that is, the conditional mean, and consequently is BP with its
desirable properties as a selection criterion. Unfortunately, however, we probably never
know the mean of y, which is Xβ in our mixed model. We may, however, know V
accurately enough to assume that our estimate is the parameter value. This leads to the
derivation of best linear unbiased prediction (BLUP).

3 Best Linear Unbiased Prediction

Suppose the predictand is the random variable, w, and all we know about it is that it has
mean k′β, variance = v, and its covariance with y′ is c′. How should we predict w? One
possibility is to find some linear function of y that has expectation, k′β (is unbiased), and
in the class of such predictors has minimum variance of prediction errors. This method
is called best linear unbiased prediction (BLUP).

Let the predictor be a′y. The expectation of a′y = a′Xβ, and we want to choose a
so that the expectation of a′y is k′β. In order for this to be true for any value of β, it is
seen that a′ must be chosen so that

a′X = k′. (12)

Now the variance of the prediction error is

V ar(a′y − w) = a′Va− 2a′c + v. (13)

Consequently, we minimize (13) subject to the condition of (12). The equations to be
solved to accomplish this are(

V X
X′ 0

)(
a
θ

)
=

(
c
k

)
. (14)

Note the similarity to (1) in Chapter 3, the equations for finding BLUE of k′β.

Solving for a in the first equation of (14),

a = −V−1Xθ + V−1c. (15)

Substituting this value of a in the second equation of (14)

X′V−1Xθ = −k + X′V−1c.
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Then, if the equations are consistent, and this will be true if and only if k′β is estimable,
a solution to θ is

θ = −(X′V−1X)−k + (X′V−1X)−X′V−1c.

Substituting the solution to θ in (15) we find

a = V−1X(X′V−1X)−k−V−1X(X′V−1X)−X′V−1c + V−1c. (16)

Then the predictor is

a′y = k′(X′V−1X)−X′V−1y + c′V−1[y −X(X′V−1X)−X′V−1y]. (17)

But because (X′V−1X)−X′V−1y = βo, a solution to GLS equations, the predictor can
be written as

k′βo + c′V−1(y −Xβo). (18)

This result was described by Henderson (1963) and a similar result by Goldberger (1962).

Note that if k′β = 0 and if β is known, the predictor would be c′V−1(y − Xβ).
This is the usual selection index method for predicting w. Thus BLUP is BLP with βo

substituted for β.

4 Alternative Derivations Of BLUP

4.1 Translation invariance

We want to predict m′w in the situation with unknown β. But BLP, the minimum MSE
predictor in the class of linear functions of y, involves β. Is there a comparable predictor
that is invariant to β?

Let the predictor be
a′y + b,

invariant to the value of β. For translation invariance we require

a′y + b = a′(y + Xk) + b

for any value of k. This will be true if and only if a′X = 0. We minimize

E(a′y + b−m′w)2 = a′Va− 2a′Cm + b2 + m′Gm

when a′X = 0 and where G = V ar(w). Clearly b must equal 0 because b2 is posi-
tive. Minimization of a′Va − 2a′Cm subject to a′X = 0 leads immediately to predictor
m′C′V−1(y − Xβo), the BLUP predictor. Under normality BLUP has, in the class of
invariant predictors, the same properties as those stated for BLP.
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4.2 Selection index using functions of y with zero means

An interesting way to compute BLUP of w is the following. Compute β∗ = L′y such that

E(Xβ∗) = Xβ.

Then compute

y∗ = y −Xβ∗
= (I−XL′)y ≡ T′y.

Now

V ar(y∗) = T′VT ≡ V∗, (19)

and

Cov(y∗,w
′) = T′C ≡ C∗, (20)

where C = Cov(y,w′). Then selection index is

ŵ = C
′

∗V
−
∗ y∗. (21)

V ar(ŵ) = Cov(ŵ,w′) = C
′

∗V
−C∗. (22)

V ar(ŵ −w) = V ar(w)− V ar(ŵ). (23)

Now ŵ is invariant to choice of T and to the g-inverse of V∗ that is computed. V∗ has
rank = n−r. One choice of β∗ is OLS = (X′X)−X′y. In that case T = I−X(X′X)−X′.
β∗ could also be computed as OLS of an appropriate subset of y, with no fewer than r
elements of y.

Under normality,

ŵ = E(w | y∗), and (24)

V ar(ŵ −w) = V ar(w | y∗). (25)

5 Variance Of Prediction Errors

We now state some useful variances and covariances. Let a vector of predictands be w.
Let the variance-covariance matrix of the vector be G and its covariance with y be C′.
Then the predictor of w is

ŵ = K′βo + C′V−1(y −Xβo). (26)

Cov(ŵ,w′) = K′(X′V−1X)−X′V−1C + C′V−1C

−C′V−1X(X′V−1X)−X′V−1C. (27)
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V ar(ŵ) = K′(X′V−1X)−K + C′V−1C

−C′V−1X(X′V−1X)−X′V−1C. (28)

V ar(ŵ −w) = V ar(w)− Cov(ŵ,w′)− Cov(w, ŵ′) + V ar(ŵ)

= K′(X′V−1X)−K−K′(X′V−1X)−X′V−1C

−C′V−1X(X′V−1X)−K + G−C′V−1C

+ C′V−1X(X′V−1X)−X′V−1C. (29)

6 Mixed Model Methods

The mixed model equations, (4) of Chapter 3, often provide an easy method to compute
BLUP. Suppose the predictand, w, can be written as

w = K′β + u, (30)

where u are the variables of the mixed model. Then it can be proved that

BLUP of w = BLUP of K′β + u = K′βo + û, (31)

where βo and û are solutions to the mixed model equations. From the second equation
of the mixed model equations,

û = (Z′R−1Z + G−1)−1Z′R−1(y −Xβo).

But it can be proved that

(Z′R−1Z + G−1)−1Z′R−1 = C′V−1,

where C = ZG, and V = ZGZ′ + R. Also βo is a GLS solution. Consequently,

K′βo + C′V−1(y −Xβo) = K′βo + û.

From (24) it can be seen that

BLUP of u = û. (32)

Proof that (Z′R−1Z + G−1)−1Z′R−1 = C′V−1 follows.

C′V−1 = GZ′V−1

= GZ′[R−1 −R−1Z(Z′R−1Z + G−1)−1Z′R−1]

= G[Z′R−1 − Z′R−1Z(Z′R−1Z + G−1)−1Z′R−1]

= G[Z′R−1 − (Z′R−1Z + G−1)(Z′R−1Z + G−1)−1Z′R−1

+ G−1(Z′R−1Z + G−1)−1Z′R−1]

= G[Z′R−1 − Z′R−1 + G−1(Z′R−1Z + G−1)−1Z′R−1]

= (Z′R−1Z + G−1)−1Z′R−1.

This result was presented by Henderson (1963). The mixed model method of estima-
tion and prediction can be formulated as Bayesian estimation, Dempfle (1977). This is
discussed in Chapter 9.
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7 Variances from Mixed Model Equations

A g-inverse of the coefficient matrix of the mixed model equations can be used to find
needed variances and covariances. Let a g-inverse of the matrix of the mixed model
equations be (

C11 C12

C
′
12 C22

)
(33)

Then

V ar(K′βo) = K′C11K. (34)

Cov(K′βo, û′) = 0. (35)

Cov(K′βo,u′) = −K′C12. (36)

Cov(K′βo, û′ − u′) = K′C12. (37)

V ar(û) = G−C22. (38)

Cov(û,u′) = G−C22. (39)

V ar(û− u) = C22. (40)

V ar(ŵ −w) = K′C11K + K′C12 + C
′

12K + C22. (41)

These results were derived by Henderson (1975a).

8 Prediction Of Errors

The prediction of errors (estimation of the realized values) is simple. First, consider the
model y = Xβ + ε and the prediction of the entire error vector, ε. From (18)

ε̂ = C′V−1(y −Xβo),

but since C′ = Cov(ε,y′) = V, the predictor is simply

ε̂ = VV−1(y −Xβo)

= y −Xβo. (42)

To predict εn+1, not in the model for y, we need to know its covariance with y.
Suppose this is c′. Then

εn+1 = c′V−1(y −Xβo)

= c′V−1ε̂. (43)
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Next consider prediction of e from the mixed model. Now Cov(e,y′) = R. Then

ê = RV−1(y −Xβo)

= R[R−1 −R−1Z(Z′R−1Z + G−1)−1Z′R−1](y −Xβo),

from the result on V−1,

= [I− Z(Z′R−1Z + G−1)−1Z′R−1](y −Xβo)

= y −Xβo − Z(Z′R−1Z + G−1)−1Z′R−1(y −Xβo)

= y −Xβo − Zû. (44)

To predict en+1, not in the model for y, we need the covariance between it and e, say
c′. Then the predictor is

ên+1 = c′R−1ê. (45)

We now define e′ = [e
′
p e

′
m], where ep refers to errors attached to y and em to future

errors. Let (
ep

em

)
=

(
Rpp Rpm

R
′
pm Rmm

)
(46)

Then
êp = y −Xβo − Zû,

and

êm = R
′

pmR−1
pp êp.

Some prediction error variances and covariances follow.

V ar(êp − ep) = WCW′,

where

W = [X Z],C =

(
C1

C2

)
where C is the inverse of mixed model coefficient matrix, and C1, C2 have p,q rows
respectively. Additionally,

Cov[(êp − ep), (βo)′K] = −WC
′

1K,

Cov[(êp − ep), (û− u)′] = −WC
′

2,

Cov[(êp − ep), (êm − em)′] = WCW′R−1
pp Rpm,

V ar(êm − em) = Rmm −R
′

pmR−1
pp WCW′R−1

pp Rpm,

Cov[(êm − em), (βo)′K] = −R
′

pmR−1
pp WC

′

1K, and

Cov[(êm − em), (û− u)′] = −R
′

pmR−1
pp WC

′

2.
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9 Prediction Of Missing u

Three simple methods exist for prediction of a u vector not in the model, say un.

ûn = B′V−1(y −Xβo) (47)

where B′ is the covariance between un and y′. Or

ûn = C′G−1û, (48)

where C′ = Cov(un,u
′), G = V ar(u), and û is BLUP of u. Or write expanded mixed

model equations as follows: X′R−1X X′R−1Z 0
Z′R−1X Z′R−1Z + W11 W12

0 W
′
12 W22


 βo

û
ûn

 =

 X′R−1y
Z′R−1y

0

 , (49)

where (
W11 W12

W
′
12 W22

)
=

(
G C
C′ Gn

)−1

and G = V ar(u), C = Cov(u, u
′
n), Gn = V ar(un). The solution to (49) gives the

same results as before when un is ignored. The proofs of these results are in Henderson
(1977a).

10 Prediction When G Is Singular

The possibility exists that G is singular. This could be true in an additive genetic model
with one or more pairs of identical twins. This poses no problem if one uses the method
û = GZ′V−1(y − Xβ0), but the mixed model method previously described cannot be
used since G−1 is required. A modification of the mixed model equations does permit a
solution to βo and û. One possibility is to solve the following.(

X′R−1X X′R−1Z
GZ′R−1X GZ′R−1Z + I

)(
βo

û

)
=

(
X′R−1y
GZ′R−1y

)
(50)

The coefficient matrix has rank, r + q. Then βo is a GLS solution to β, and û is BLUP
of u. Note that the coefficient matrix above is not symmetric. Further, a g-inverse of
it does not yield sampling variances. For this we proceed as follows. Compute C, some
g-inverse of the matrix. Then

C

(
I 0
0 G

)
has the same properties as the g-inverse in (33).
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If we want a symmetric coefficient matrix we can modify the equations of (50) as
follows. (

X′R−1X X′R−1ZG
GZ′R−1X GZ′R−1ZG + G

)(
βo

α̂

)
=

(
X′R−1y
GZ′R−1y

)
(51)

This coefficient matrix has rank, r+ rank (G). Solve for βo, α̂. Then

û = Gα̂.

Let C be a g-inverse of the matrix of (51). Then(
I 0
0 G

)
C

(
I 0
0 G

)

has the properties of (33).

These results on singular G are due to Harville (1976). These two methods for sin-
gular G can also be used for nonsingular G if one wishes to avoid inverting G, Henderson
(1973).

11 Examples of Prediction Methods

Let us illustrate some of these prediction methods. Suppose

X′ =

(
1 1 1 1 1
1 2 1 3 4

)
, Z′ =

 1 1 0 0 0
0 0 1 0 0
0 0 0 1 1

 ,

G =

 3 2 1
4 1

5

 , R = 9I, y′ = (5, 3, 6, 7, 5).

By the basic GLS and BLUP methods

V = ZGZ′ + R =


12 3 2 1 1

12 2 1 1
13 1 1

14 5
14

 .

Then the GLS equations, X′V−1Xβo = X′V−1y are(
.249211 .523659
.523659 1.583100

)
βo =

(
1.280757
2.627792

)
.
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The inverse of the coefficient matrix is(
13.1578 −4.3522
−4.3522 2.0712

)
,

and the solution to βo is [5.4153 − .1314]′. To predict u,

y −Xβo =


−.2839
−2.1525
.7161

1.9788
.1102

 ,

GZ′V−1 =

 .1838 .1838 .0929 .0284 .0284
.0929 .0929 .2747 .0284 .0284
.0284 .0284 .0284 .2587 .2587

 ,

û = GZ′V−1(y −Xβo) =

 −.3220
.0297
.4915

 ,
Cov(βo, û′ − u′) = −(X′V−1X)−X′V−1ZG

=

(
−3.1377 −3.5333 .4470
.5053 .6936 −1.3633

)
, and

V ar(û− u) = G−GZ′V−1ZG + GZ′V−1X(X′V−1X)−X′V−1ZG

=

 3 2 1
4 1

5

 −
 1.3456 1.1638 .7445

1.5274 .7445
2.6719



+

 1.1973 1.2432 .9182
1.3063 .7943

2.3541



=

 2.8517 2.0794 1.1737
3.7789 1.0498

4.6822

 .
The mixed model method is considerably easier.

X′R−1X =

(
.5556 1.2222

1.2222 3.4444

)
,

X′R−1Z =

(
.2222 .1111 .2222
.3333 .1111 .7778

)
,

Z′R−1Z =

 .2222 0 0
.1111 0

.2222

 ,

12



X′R−1y =

(
2.8889
6.4444

)
, Z′R−1y =

 .8889
.6667
1.3333

 ,

G−1 =

 .5135 −.2432 −.0541
.3784 −.0270

.2162

 .
Then the mixed model equations are

.5556 1.2222 .2222 .1111 .2222
3.4444 .3333 .1111 .7778

.7357 −.2432 −.0541
.4895 −.0270

.4384


(
βo

û

)
=


2.8889
6.4444
.8889
.6667

1.3333

 .

A g-inverse (regular inverse) is
13.1578 −4.3522 −3.1377 −3.5333 .4470

2.0712 .5053 .6936 −1.3633
2.8517 2.0794 1.1737

3.7789 1.0498
4.6822

 .

The upper 2 x 2 represents (X′V−1X)−, the upper 2 x 3 represents Cov(βo, û′ − u′),
and the lower 3 x 3 V ar(û − u). These are the same results as before. The solution is
(5.4153, −.1314, −.3220, .0297, .4915) as before.

Now let us illustrate with singular G. Let the data be the same as before except

G =

 2 1 3
3 4

7

 .
Note that the 3rd row of G is the sum of the first 2 rows. Now

V =


11 2 1 3 3

11 1 3 3
12 4 4

16 7
16

 ,

and

V−1 =


.0993 −.0118 .0004 −.0115 −.0115

.0993 .0004 −.0115 −.0115
.0943 −.0165 −.0165

.0832 −.0280
.0832

 .
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The GLS equations are (
.2233 .3670

1.2409

)
βo =

(
1.0803
1.7749

)
.

(X′V−1X)−1 =

(
8.7155 −2.5779

1.5684

)
.

βo =

(
4.8397
−.0011

)
.

û =

 .1065 .1065 −.0032 .1032 .1032
−.0032 −.0032 .1516 .1484 .1484
.1033 .1033 .1484 .2516 .2516




.1614
−1.8375

1.1614
2.1636
.1648

 =

 0582
.5270
.5852

 .

Note that û3 = û1 + û2 as a consequence of the linear dependencies in G.

Cov(βo, û′ − u′) =

(
−.9491 −.8081 −1.7572
−.5564 −.7124 −1.2688

)
.

V ar(û− u) =

 1.9309 1.0473 2.9782
2.5628 3.6100

6.5883

 .
By the modified mixed model methods

GZ′R−1X =

 1.2222 3.1111
1.4444 3.7778
2.6667 6.8889

 ,

GZ′R−1Z =

 .4444 .1111 .6667
.2222 .3333 .8889
.6667 .4444 1.5556

 ,

GZ′R−1y =

 6.4444
8.2222

14.6667

 , X′R−1y =

(
2.8889
6.4444

)
.

Then the non-symmetric mixed model equations (50) are
.5556 1.2222 .2222 .1111 .2222

1.2222 3.4444 .3333 .1111 .7778
1.2222 3.1111 1.4444 .1111 .6667
1.4444 3.7778 .2222 1.3333 .8889
2.6667 6.8889 .6667 .4444 2.5556


(
βo

û

)
=


2.8889
6.4444
6.4444
8.2222

14.6667

 .
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The solution is (4.8397, −.0011, .0582, .5270, .5852) as before. The inverse of the
coefficient matrix is

8.7155 −2.5779 −.8666 −.5922 .4587
−2.5779 1.5684 .1737 .1913 −.3650
−.9491 −.5563 .9673 .0509 −.0182
−.8081 −.7124 .1843 .8842 −.0685
−1.7572 −1.2688 .1516 −.0649 .9133

 .

Post multiplying this matrix by

(
I 0
0 G

)
gives


8.7155 −2.5779 −.9491 −.8081 −1.7572

1.5684 −.5563 −.7124 −1.2688
1.9309 1.0473 2.9782

2.5628 3.6101
6.5883

 .

These yield the same variances and covariances as before. The analogous symmetric
equations (51) are

.5556 1.2222 1.2222 1.4444 2.6667
3.4444 3.1111 3.7778 6.8889

5.0 4.4444 9.4444
7.7778 12.2222

21.6667


(
βo

α̂

)
=


2.8889
6.4444
6.4444
8.2222

14.6667

 .

A solution is [4.8397, −.0011, −.2697, 0, .1992]. Premultiplying α̂ by G we obtain
û′ = (.0582, .5270, .5852) as before.

A g-inverse of the matrix is
8.7155 −2.5779 −.2744 0 −.1334

1.5684 −.0176 0 −.1737
1.1530 0 −.4632

0 0
.3197

 .

Pre-and post-multiplying this matrix by

(
I 0
0 G

)
, yields the same matrix as post-

multiplying the non-symmetric inverse by

(
I 0
0 G

)
and consequently we have the

required matrix for variances and covariances.
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12 Illustration Of Prediction Of Missing u

We illustrate prediction of random variables not in the model for y by a multiple trait
example. Suppose we have 2 traits and 2 animals, the first 2 with measurements on traits
1 and 2, but the third with a record only on trait 1. We assume an additive genetic model
and wish to predict breeding value of both traits on all 3 animals and also to predict the
second trait of animal 3. The numerator relationship matrix for the 3 animals is 1 1/2 1/2

1/2 1 1/4
1/2 1/4 1

 .
The additive genetic variance-covariance and error covariance matrices are assumed

to be G0 and R0 =

(
2 2
2 3

)
and

(
4 1
1 5

)
, respectively. The records are ordered

animals in traits and are [6, 8, 7, 9, 5]. Assume

X′ =

(
1 1 1 0 0
0 0 0 1 1

)
.

If all 6 elements of u are included

Z =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

 .

If the last (missing u6) is not included delete the last column from Z. When all u are
included

G =

(
Ag11 Ag12

Ag12 Ag22

)
,

where gij is the ijth element of G0, the genetic variance-covariance matrix. Numerically
this is 

2 1 1 2 1 1
2 .5 1 2 .5

2 1 .5 2
3 1.5 1.5

3 .75
3


.

If u6 is not included, delete the 6th row and column from G.

R =


4 0 0 1 0

4 0 0 1
4 0 0

5 0
5

 .
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R−1 =


.2632 0 0 −.0526 0

.2632 0 0 −.0526
.25 0 0

.2105 0
.2105

 .

G−1 for the first 5 elements of u is
2.1667 −1. −.3333 −1.3333 .6667

2. 0 .6667 −1.3333
.6667 0 0

1.3333 −.6667
1.3333

 .

Then the mixed model equations for βo and û1, . . . , û5 are

.7763 −.1053 .2632 .2632 .25 −.0526 −.0526
.4211 −.0526 −.0526 0 .2105 .2105

2.4298 −1. −.3333 −1.3860 .6667
2.2632 0 .6667 −1.3860

9167 0 0
1.5439 −.6667

1.5439





β̂1

β̂2

û1

û2

û3

û4

û5



= (4.70, 2.21, 1.11, 1.84, 1.75, 1.58, .63)′.

The solution is (6.9909, 6.9959, .0545, -.0495, .0223, .2651, -.2601).

To predict u6 we can use û1, . . . , û5. The solution is

û6 = [1 .5 2 1.5 .75]


2 1 1 2 1

2 .5 1 2
2 1 .5

3 1.5
3



−1
û1

û2

û3

û4

û5


= .1276.

We could have solved directly for û6 in mixed model equations as follows.

.7763 −.1053 .2632 .2632 .25 .0526 −.0526 0
.4211 −.0526 −.0526 0 .2105 .2105 0

2.7632 −1. −1. −1.7193 .6667 .6667
2.2632 0 .6667 −1.3860 0

2.25 .6667 0 −1.3333
1.8772 .6667 −.6667

1.5439 0
1.3333
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(
β̂
û

)
= [4.70, 2.21, 1.11, 1.84, 1.75, 1.58, .63, 0]′.

The solution is (6.9909, 6.9959, .0545, -.0495, .0223, .2651, -.2601, .1276), and equals the
previous solution.

The predictor of the record on the second trait on animal 3 is some new β̂2 + û6 + ê6.
We already have û6. We can predict ê6 from ê1 . . . ê5.


ê1
ê2
ê3
ê4
ê5

 =


y1

y2

y3

y4

y5

−


1 0 1 0 0 0 0
1 0 0 1 0 0 0
1 0 0 0 1 0 0
0 1 0 0 0 1 0
0 1 0 0 0 0 1





β̂1

β̂2

û1

û2

û3

û4

û5


=


−1.0454

1.0586
−.0132
1.7391
−1.7358

 .

Then ê6 = (0 0 1 0 0) R−1 (ê1 . . . ê5)
′ = −.0033. The column vector above is Cov [e6, (e1 e2 e3 e4 e4 e5)].

R above is V ar[(e1 . . . ê5)
′].

Suppose we had the same model as before but we have no data on the second trait.
We want to predict breeding values for both traits in the 3 animals, that is, u1, . . . , u6.
We also want to predict records on the second trait, that is, u4 + e4, u5 + e5, u6 + e6. The
mixed model equations are

.75 .25 .25 .25 0 0 0
2.75 −1. −1. −1.6667 .6667 .6667

2.25 0 .6667 −1.3333 0
2.25 .6667 0 −1.3333

1.6667 −.6667 −.6667
1.3333 0

1.3333





β̂
û1

û2

û3

û4

û5

û6


=



5.25
1.50
2.00
1.75
0
0
0


.

The solution is

[7.0345,−.2069, .1881,−.0846,−.2069, .1881,−.0846].

The last 6 values represent prediction of breeding values.

 ê1
ê2
ê3

 =

 y1

y2

y3

− (X Z)


β̂
û1

û2

û3

 =

 −.8276
.7774
.0502

 .
Then  ê4

ê5
ê6

 =

 1 0 0
0 1 0
0 0 1


 4 0 0

0 4 0
0 0 4


−1 ê1

ê2
ê3

 =

 −.2069
.1944
.0125

 .
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Then predictions of second trait records are

β2 +

 −.2069
.1881
−.0846

 +

 −.2069
.1944
.0125

 ,
but β2 is unknown.

13 A Singular Submatrix In G

Suppose that G can be partitioned as

G =

(
G11 0
0 G22

)
such that G11 is non-singular and G22 is singular. A corresponding partition of u′ is
(u

′
1 u

′
2). Then two additional methods can be used. First, solve (52) X′R−1X X′R−1Z1 X′R−1Z2

Z
′
1R
−1X Z

′
1R
−1Z1 + G−1

11 Z
′
1R
−1Z2

G22Z
′
2R
−1X G22Z

′
2R
−1Z1 G22Z

′
2R
−1Z2 + I


 βo

û1

û2

 =

 X′R−1y
Z

′
1R
−1y

G22Z
′
2R
−1y

 . (52)

Let a g-inverse of this matrix be C. Then the prediction errors come from

C

 I 0 0
0 I 0
0 0 G22

 . (53)

The symmetric counterpart of these equations is X′R−1X X′R−1Z1 X′R−1Z2G22

Z
′
1R
−1X Z

′
1R
−1Z1 + G−1

11 Z
′
1R
−1Z2G22

G22Z
′
2R
−1X G22Z

′
2R
−1Z1 G22Z

′
2R
−1Z2G22 + G22


 βo

û1

α̂2

 =

 X′R−1y
Z

′
1R
−1y

G22Z
′
2R
−1y

 , (54)

and û2 = G22α̂2.

Let C be a g-inverse of the coefficient matrix of (54). Then the variances and covari-
ances come from  I 0 0

0 I 0
0 0 G22

 C

 I 0 0
0 I 0
0 0 G22

 . (55)
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14 Prediction Of Future Records

Most applications of genetic evaluation are essentially problems in prediction of future
records, or more precisely, prediction of the relative values of future records, the relativity
arising from the fact that we may have no data available for estimation of future Xβ, for
example, a year effect for some record in a future year. Let the model for a future record
be

yi = x
′

iβ + z
′

iu + ei. (56)

Then if we have available BLUE of x
′
iβ = x

′
iβ

o and BLUP of u and ei, û and êi, BLUP
of this future record is

x
′

iβ
o + z

′

iû + êi.

Suppose however that we have information on only a subvector of β say β2. Write
the model for a future record as

x
′

1iβ1 + x
′

2iβ2 + z
′

iu + ei.

Then we can assert BLUP for only

x
′

2iβ2 + z′2u + ei.

But if we have some other record we wish to compare with this one, say yj, with
model,

yj = x
′

1jβ1 + x
′

2jβ2 + z
′

ju + ej,

we can compute BLUP of yi − yj provided that

x1i = x1j.

It should be remembered that the variance of the error of prediction of a future record
(or linear function of a set of records) should take into account the variance of the error
of prediction of the error (or linear combination of errors) and also its covariance with
βo and û. See Section 8 for these variances and covariances. An extensive discussion of
prediction of future records is in Henderson (1977b).

15 When Rank of MME Is Greater Than n

In some genetic problems, and in particular individual animal multiple trait models, the
order of the mixed model coefficient matrix can be much greater than n, the number
of observations. In these cases one might wish to consider a method described in this
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section, especially if one can thereby store and invert the coefficient matrix in cases when
the mixed model equations are too large for this to be done. Solve equations (57) for βo

and s . (
V X
X′ 0

)(
s
βo

)
=

(
y
0

)
. (57)

Then βo is a GLS solution and
û = GZ′s (58)

is BLUP of u. It is easy to see why these are true. Eliminate s from equations (57). This
gives

−(X′V−1X)βo = −X′V−1y,

which are the GLS equations. Solving for s in (57) we obtain

s = V−1(y −Xβo).

Then GZ′s = GZ′V−1(y −Xβo), which we know to be BLUP of u.

Some variances and covariances from a g-inverse of the matrix of (57) are shown
below. Let a g-inverse be (

C11 C12

C
′
12 C22

)
.

Then

V ar(K′βo) = −K′C22K. (59)

V ar(û) = GZ′C11VC11ZG. (60)

Cov(K′βo, û′) = K′C
′

12VC11ZG = 0. (61)

Cov(K′βo,u′) = K′C
′

12ZG (62)

Cov(K′βo, û′ − u′) = −K′C
′

12ZG. (63)

V ar(û− u) = G− V ar(û). (64)

The matrix of (57) will often be too large to invert for purposes of solving s and βo.
With mixed model equations that are too large we can solve by Gauss-Seidel iteration.
Because this method requires diagonals that are non-zero, we cannot solve (57) by this
method. But if we are interested in û, but not in βo, an iterative method can be used.

Subsection 4.2 presented a method for BLUP that is

û = C
′

∗V
−
∗ y∗.

Now solve iteratively
V∗s = y∗, (65)
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then
û = C

′

∗s. (66)

Remember that V∗ has rank = n− r. Nevertheless convergence will occur, but not to a
unique solution. V∗ (and y∗) could be reduced to dimension, n− r, so that the reduced
V∗ would be non-singular.

Suppose that

X′ =

(
1 1 1 1 1
1 2 3 2 4

)
,

C′ =

(
1 1 2 0 3
2 0 1 1 2

)
,

V =


9 3 2 1 1

8 1 2 2
9 2 1

7 2
8

 ,

y′ = [6 3 5 2 8].

First let us compute βo by GLS and û by GZ′V−1(y −Xβo).

The GLS equations are(
.335816 .828030
.828030 2.821936

)
βo =

(
1.622884
4.987475

)
.

(βo)′ = [1.717054 1.263566].

From this
û′ = [.817829 1.027132].

By the method of (57) we have equations

9 3 2 1 1 1 1
8 1 2 2 1 2

9 2 1 1 3
7 2 1 2

8 1 4
0 0

0



(
s
βo

)
=



6
3
5
2
8
0
0


.

The solution is (βo)′ = same as for GLS,

s′ = (.461240− .296996− .076550− .356589.268895).
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Then û = C′s = same as before. Next let us compute û from different y∗. First let β∗ be
the solution to OLS using the first two elements of y . This gives

β∗ =

(
2 −1 0 0 0
−1 1 0 0 0

)
y,

and

y∗ =


0 0 0 0 0
0 0 0 0 0
1 −2 1 0 0
0 −1 0 1 0
2 −3 0 0 1

 y = T′y,

or
y

′

∗ = [0 0 5 − 1 11].

Using the last 3 elements of y∗ gives

V
′

∗ =

 38 11 44
11 14

72

 , C
′

∗ =

(
1 −1 2
3 1 6

)
.

Then
û = C

′

∗V
−1
∗ y∗ = same as before.

Another possibility is to compute β∗ by OLS using elements 1, 3 of y. This gives

β∗ =

(
1.5 0 −.5 0 0
−.5 0 .5 0 0

)
y,

and
y

′

∗ = [0 − 2.5 0 − 3.5 3.5].

Dropping the first and third elements of y∗,

V∗ =

 9.5 4.0 6.5
9.5 4.0

25.5

 , C
′

∗ =

(
−.5 −1.5 .5
−1.5 −.5 1.5

)
.

This gives the same value for û.

Finally we illustrate β∗ by GLS.

β∗ =

(
.780362 .254522 −.142119 .645995 .538760
−.242894 −.036176 .136951 −.167959 .310078

)
y.

y
′

∗ =
(

3.019380, −1.244186, −.507752, −2.244186, 1.228682
)
.
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V∗ =


3.268734 −.852713 .025840 −2.85713 .904393

4.744186 −1.658915 −1.255814 −.062016
5.656331 −.658915 −3.028424

3.744186 −.062016
2.005168

 .

C
′

∗ =

(
.940568 .015504 .090439 −.984496 .165375
.909561 −1.193798 −.297158 −.193798 .599483

)
.

Then û = C
′
∗V
−
∗ y∗. V∗ has rank = 3, and one g-inverse is

0 0 0 0 0
.271363 .092077 .107220 0

.211736 .068145 0
.315035 0

0

 .

This gives û the same as before.

Another g-inverse is
1.372401 0 0 1.035917 −.586957

0 0 0 0
0 0 0

1.049149 −.434783
.75000

 .

This gives the same û as before.

It can be seen that when β∗ = βo, a GLS solution, C′V−1y∗ = C
′
∗V
−
∗ y∗. Thus if V

can be inverted to obtain βo, this is the easier method. Of course this section is really
concerned with the situation in which V−1 is too difficult to compute, and the mixed
model equations are also intractable.

16 Prediction When R Is Singular

If R is singular, the usual mixed model equations, which require R−1, cannot be used.
Harville (1976) does describe a method using a particular g-inverse of R that can be used.
Finding this g-inverse is not trivial. Consequently, we shall describe methods different
from his that lead to the same results. Different situations exist depending upon whether
X and/or Z are linearly independent of R.
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16.1 X and Z linearly dependent on R

If R has rank t < n, we can write R with possible re-ordering of rows and columns as

R =

(
R1 R1L

L′R1 L′R1L

)
,

where R1 is t × t, and L is t × (n − t) with rank (n − t). Then if X, Z are linearly
dependent upon R,

X =

(
X1

L′X1

)
, Z =

(
Z1

L′Z1

)
.

Then it can be seen that V is singular, and X is linearly dependent upon V. One could
find βo and û by solving these equations(

V X
X′ 0

)(
s
βo

)
=

(
y
0

)
, (67)

and û = GZ′s. See section 14. It should be noted that (67) is not a consistent set of
equations unless

y =

(
y1

L′y1

)
.

If X has full column rank, the solution to βo is unique. If X is not full rank, K′βo

is unique, given K′β is estimable. There is not a unique solution to s but û = GZ′s is
unique.

Let us illustrate with

X′ = (1 2 − 3), Z′ =

(
1 2 −3
2 1 −3

)
, y′ = (5 3 − 8),

R =

 3 −1 −2
4 −3

5

 , G = I.

Then

V = R + ZGZ =

 8 3 −11
9 −12

23

 ,
which is singular. Then we find some solution to

8 3 −11 1
3 9 −12 2

−11 −12 23 −3
1 2 −3 0



s1

s2

s3

βo

 =


5
3
−8

0

 .
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Three different solution vectors are

(14 −7 0 54)/29,
(21 0 7 54)/29,
( 0 −21 −14 54)/29.

Each of these gives û′ = (0 21)/29 and βo = 54/29.

We can also obtain a unique solution to K′βo and û by setting up mixed model
equations using y1 only or any other linearly independent subset of y. In our example let
us use the first 2 elements of y. The mixed model equations are

 1 2
1 2
2 1

( 3 −1
−1 4

)−1 (
1 1 2
2 2 1

)
+

 0 0 0
0 1 0
0 0 1




 βo

û1

û2

 =

 1 2
1 2
2 1

( 3 −1
−1 4

)(
5
3

)
.

These are

11−1

 20 20 19
20 31 19
19 19 34


 βo

û1

û2

 =

 51
51
60

 /11.

The solution is (54, 0, 21)/29 as before.

If we use y1, y3 we get the same equations as above, and also the same if we use y2,
y3

16.2 X linearly independent of V, and Z linearly dependent on
R

In this case V is singular but with X independent of V equations (67) have a unique
solution if X has full column rank. Otherwise K′βo is unique provided K′β is estimable.
In contrast to section 15.1, y need not be linearly dependent upon V and R. Let us use
the example of section 14.1 except now X′ = (1 2 3), and y′ = (5 3 4). Then the unique
solution is (s βo)′ = (1104, −588, 24, 4536)/2268.

16.3 Z linearly independent of R

In this case V is non-singular, and X is usually linearly independent of V even though it
may be linearly dependent on R. Consequently s and K′βo are unique as in section 15.2.
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17 Another Example of Prediction Error Variances

We demonstrate variances of prediction errors and predictors by the following example.

nij

Treatment Animals
1 2

1 2 1
2 1 3

Let

R = 5I, G =

(
2 1
1 3

)
.

The mixed model coefficient matrix is
1.4 .6 .8 .6 .8

.6 0 .4 .2
8 .2 .6

1.2 −.2
1.2

 , (68)

and a g-inverse of this matrix is
0 0 0 0 0

3.33333 1.66667 −1.66667 −1.66667
3.19820 −1.44144 −2.1172

1.84685 1.30631
2.38739

 . (69)

Let K′ =

(
1 1 0
1 0 1

)
. Then

V ar

(
K′βo

û− u

)
=

(
K′

I2

)
[Matrix (69)] (K I2)

=


3.33333 1.66667 −1.66667 −1.66667

3.19820 −1.44144 −2.1172
1.84685 1.30631

2.38739

 . (70)

V ar

(
K′βo

û

)
=


3.33333 1.66667 0 0

3.198198 0 0
.15315 −.30631

.61261

 . (71)
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The upper 2 x 2 is the same as in (70).

Cov(K′βo, û′) = 0.

V ar(û) = G − V ar(û − u).

Let us derive these results from first principles.

(
K′βo

û

)
=


.33333 .33333 .33333 0
.04504 .04504 −.09009 .35135
.03604 .03604 −.07207 .08108
−.07207 −.07207 .14414 −.16216

0 0 0
.21622 .21622 .21622
−.02703 −.02703 −.02703
.05405 .05405 .05405

y (72)

computed by (
K′

I2

)
[matrix (71)]

(
X′R−1

Z′R−1

)
.

Contribution of R to V ar

(
K′βo

û

)

= [matrix (72)] R [matrix (72)]′

=


1.6667 0 0 0

1.37935 .10348 −.20696
.08278 −.16557

.33114

 . (73)

For u in (
K′βo

û

)
=

(
K′

I2

)
[matrix (72)] Z

=


.66667 .33333
.44144 .55856
.15315 −.15315
−.30631 .30631

 . (74)

Contribution of G to V ar

(
K′βo

û

)

= [matrix (74)] G [matrix (74)]′

=


1.6667 1.66662 0 0

1.81885 −.10348 .20696
.07037 −.14074

.28143

 . (75)

28



Then the sum of matrix (73) and matrix (75) = matrix (71). For variance of prediction
errors we need

Matrix (74) −


0 0
0 0
1 0
0 1

 =


.66667 .33333
.44144 .55856
−.84685 −.15315
−.30631 −.69369

 . (76)

Then contribution of G to prediction error variance is

[matrix (76)] G [Matrix (76)]′,

=


1.66667 1.66667 −1.66667 −1.66667

1.81885 −1.54492 −1.91015
1.76406 1.47188

2.05624

 . (77)

Then prediction error variance is matrix (73) + matrix (77) = matrix (70).

18 Prediction When u And e Are Correlated

In most applications of BLUE and BLUP it is assumed that Cov(u, e′) = 0. If this is not
the case, the mixed model equations can be modified to account for such covariances. See
Schaeffer and Henderson (1983).

Let

V ar

(
e
u

)
=

(
R S
S′ G

)
. (78)

Then
V ar(y) = ZGZ′ + R + ZS′ + SZ′. (79)

Let an equivalent model be

y = Xβ + Tu + ε, (80)

where T = Z + SG−1,

V ar

(
u
ε

)
=

(
G 0
0 B

)
, (81)

and B = R− SG−1S′. Then

V ar(y) = V ar(Tu + ε)

= ZGZ′ + ZS′ + SZ′ + SG−1S′ + R− SG−1S′

= ZGZ′ + R + ZS′ + SZ′
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as in the original model, thus proving equivalence. Now the mixed model equations are(
X′B−1X X′B−1T
T′B−1X T′B−1T + G−1

)(
βo

û

)
=

(
X′B−1y
T′B−1y

)
, (82)

A g-inverse of this matrix yields the required variances and covariances for estimable
functions of βo, û, and û− u.

B can be inverted by a method analogous to

V−1 = R−1 −R−1Z(Z′R−1Z + G−1)−1Z′R−1

where V = ZGZ′ + R,

B−1 = R−1 + R−1S(G− S′R−1S)−1S′R−1. (83)

In fact, it is unnecessary to compute B−1 if we instead solve (84). X′R−1X X′R−1T X′R−1S
T′R−1X T′R−1T + G−1 T′R−1S
S′R−1X S′R−1T S′R−1S−G


 βo

û
θ

 =

 X′R−1y
T′R−1y
S′R−1y

 . (84)

This may not be a good set of equations to solve iteratively since (S′R−1S−G) is negative
definite. Consequently Gauss- Seidel iteration is not guaranteed to converge, Van Norton
(1959).

We illustrate the method of this section by an additive genetic model.

X =


1 1
1 2
1 1
1 4

 , Z = I4,G =


1. .5 .25 .25

1. .25 .25
1. .5

1.

 , R = 4I4,

S = S′ = .9I4, y′ = (5, 6, 7, 9).

From these parameters

B =


2.88625 .50625 .10125 .10125

2.88625 .10125 .10125
2.88625 .50625

2.88625

 ,

and

T = T′ =


2.2375 −.5625 −.1125 −.1125

2.2375 −.1125 −.1125
2.2375 .5625

2.2375

 .
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Then the mixed model equations of (84) are

1.112656 2.225313 .403338 .403338 .403338 .403338
6.864946 −.079365 1.097106 −.660224 2.869187

3.451184 −1.842933 −.261705 −.261705
3.451184 −.261705 −.261705

3.451184 −1.842933
3.451184




βo
1

βo
2

û1

û2

û3

û4


=



7.510431
17.275150
1.389782
2.566252
2.290575
4.643516


.

The solution is (4.78722, .98139, −.21423, −.21009, .31707, .10725).

We could solve this problem by the basic method

βo = (X′V−1X)−X′V−1y,

and
û = Cov (u,y′)V−1(y −Xβo).

We illustrate that these give the same answers as the mixed model method.

V ar(y) = V =


6.8 .5 .25 .25

6.8 .25 .25
6.8 .5

6.8

 .
Then the GLS equations are(

.512821 1.025641
1.025641 2.991992

)
β̂ =

(
3.461538
7.846280

)
,

and
β̂ = (4.78722, .98139)′

as before.

Cov(u,y′) =


1.90 .50 .25 .25

1.90 .25 .25
1.90 .50

1.90

 = GZ′ + S′.

(y −Xβ̂) = (−.768610,−.750000, 1.231390, .287221).

û = (−.21423,−.21009, .31707, .10725)′ = (GZ′ + S′)V−1(y −Xβo)

as before.
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19 Direct Solution To β And u +T β

In some problems we wish to predict w = u + Tβ. The mixed model equations can be
modified to do this. Write the mixed model equations as (85). This can be done since
E(w −Tβ) = 0.(

X′R−1X X′R−1Z
Z′R−1X Z′R−1Z + G−1

)(
βo

w −Tβo

)
=

(
X′R−1y
Z′R−1y

)
. (85)

Re-write (85) as(
X′R−1X−X′R−1ZT X′R−1Z
Z′R−1X−M Z′R−1Z + G−1

)(
βo

ŵ

)
=

[
X′R−1y
Z′R−1y

)
(86)

where M = (Z′R−1Z + G−1)T. To obtain symmetry premultiply the second equation
by T′ and subtract this product from the first equation. This gives(

X′R−1X−X′R−1ZT−T′Z′R−1X + T′M X′R−1Z−M′

Z′R−1X−M Z′R−1Z + G−1

)
(
βo

ŵ

)
=

(
X′R−1y −T′Z′R−1y
Z′R−1y

)
. (87)

Let a g-inverse of the matrix of (87) be

(
C11 C12

C
′
12 C22

)
. Then

V ar(K′βo) = K′C11K.

V ar(ŵ −w) = C22.

Henderson’s mixed model equations for a selection model, equation (31), in Biomet-

rics (1975a) can be derived from (86) by making the following substitutions,

(
X
B

)
for

X, (0 B) for T, and noting that B = ZBu + Be.

We illustrate (87) with the following example.

X =


1 2
2 1
1 1
3 4

 , Z =


1 1 2
2 3 2
1 2 1
4 1 3

 , R =


5 1 1 2

6 2 1
7 1

8

 ,

G =

 3 1 1
4 2

5

 ,T =

 3 1
2 3
2 4

 , y′ = (5, 2, 3, 6).
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The regular mixed model equations are
1.576535 1.651127 1.913753 1.188811 1.584305

2.250194 2.088578 .860140 1.859363
2.763701 1.154009 1.822952

2.024882 1.142462
2.077104


(
βo

û

)
=


2.651904
3.871018
3.184149
1.867133
3.383061

 (88)

The solution is

(−2.114786, 2.422179, .086576, .757782, .580739).

The equations for solution to β and to w = u + Tβ are
65.146040 69.396108 −12.331273 −8.607904 −10.323684

81.185360 −11.428959 −10.938364 −11.699391
2.763701 1.154009 1.822952

2.024882 1.142462
2.077104


(
βo

ŵ

)
=


−17.400932
−18.446775

3.184149
1.867133
3.383061

 . (89)

The solution is
(−2.115, 2.422, −3.836, 3.795, 6.040).

This is the same solution to βo as in (88), and û + Tβo of the previous solution gives ŵ
of this solution. Further,(

I 0
T I

)
[inverse of (88)]

(
I 0
T I

)
, = [inverse of (89)]

20 Derivation Of MME By Maximizing f (y,w)

This section describes first the method used by Henderson (1950) to derive his mixed
model equations. Then a more general result is described. For the regular mixed model

E

(
u
e

)
= 0, V ar

(
u
e

)
=

(
G 0
0 R

)
.
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The density function is
f(y,u) = g(y | u) h(u),

and under normality the log of this is

k[(y −Xβ − Zu)′R−1(y −Xβ − Zu) + u′G−1u],

where k is a constant. Differentiating with respect to β,u and equating to 0 we obtain
the regular mixed model equations.

Now consider a more general mixed linear model in which

E

(
y
w

)
=

(
Xβ
Tβ

)

with Tβ estimable, and

V ar

(
y
w

)
=

(
V C
C′ G

)
with (

V C
C′ G

)−1

=

(
C11 C12

C
′
12 C22

)
.

Log of f(y,w) is

k[(y −Xβ)′C11(y −Xβ) + (y −Xβ)′C12(w −Tβ)

+(w −Tβ)′C
′

12(y −Xβ) + (w −Tβ)′C22(w −Tβ).

Differentiating with respect to β and to w and equating to 0, we obtain(
X′C11X + X′C12T + T′C

′
12X + T′C22T −(X′C12 + T′C22)

−(X′C12 + T′C22)
′ C22

)
(
βo

ŵ

)
=

(
X′C11y + T′C

′
12y

−C
′
12y

)
. (90)

Eliminating ŵ we obtain

X′(C11 −C
′

12C
−1
22 C12)Xβ

o = X′(C11 −C
′

12C
−1
22 C12)y. (91)

But from partitioned matrix inverse results we know that

C11 −C
′

12 C−1
22 C12 = V−1.

Therefore (91) are GLS equations and K′βo is BLUE of K′β if estimable.

Now solve for ŵ from the second equation of (90).

ŵ = −C−1
22 C

′

12(y −Xβo) + Tβo.

= C′V−1(y −Xβo) + Tβo.

= BLUP of w because −C−1
22 C

′

12 = C′V−1.
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To prove that−C−1
22 C

′
12 = C′V−1 note that by the definition of an inverse C

′
12V+C22C

′ =
0. Pre-multiply this by C−1

22 and post-multiply by V−1 to obtain

C−1
22 C

′

12 + C′V−1 = 0 or −C−1
22 C

′

12 = C′V−1.

We illustrate the method with the same example as that of section 18.

V = ZGZ′ + R =


46 66 38 74

118 67 117
45 66

149

 ,C = ZG =


6 9 13

11 18 18
6 11 10

16 14 21

 .

Then from the inverse of

(
V ZG
GZ′ G

)
, we obtain

C11 =


.229215 −.023310 −.018648 −.052059

.188811 −.048951 −.011655
.160839 −.009324

.140637

 ,

C12 =


.044289 −.069930 −.236985
−.258741 −.433566 −.247086
−.006993 −.146853 .002331
−.477855 −.034965 −.285159

 ,
and

C22 =

 2.763701 1.154009 1.822952
2.024882 1.142462

2.077104

 .
Then applying (90) to these results we obtain the same equations as in (89).

The method of this section could have been used to derive the equations of (82) for
Cov(u, e′) 6= 0.

f(y,u) = g(y | u) h(u).

E(y | u) = Xβ + Tu, V ar(y | u) = B.

See section 17 for definition of T and B. Then

log g(y | u) h(u) = k(y −Xβ −Tu)′B−1(y −Xβ −Tu) + u′G−1u.

This is maximized by solving (82).
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This method also could be used to derive the result of section 18. Again we make
use of f(y,w) = g(y | w) h(w).

E(y | w) = Xβ + Z(w −Tβ).

V ar(y | w) = R.

Then

log g(y | w) h(w) = k[(y −Xβ + Zw − ZTβ)′R−1(y −Xβ + Zw − ZTβ)]

+ (w −Tβ)′G−1(w −Tβ).

This is maximized by solving equations (87).
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Chapter 6
G and R Known to Proportionality

C. R. Henderson

1984 - Guelph

In the preceding chapters it has been assumed that V ar(u) = G and V ar(e) =
R are known. This is, of course, an unrealistic assumption, but was made in order to
present estimation, prediction, and hypothesis testing methods that are exact and which
may suggest approximations for the situation with unknown G and R. One case does
exist, however, in which BLUE and BLUP exist, and exact tests can be made even when
these variances are unknown. This case is G and R known to proportionality.

Suppose that we know G and R to proportionality, that is

G = G∗ σ2
e , (1)

R = R∗ σ2
e .

G∗ and R∗ are known, but σ2
e is not. For example, suppose that we have a one way mixed

model

yij = x
′

ijβ + ai + eij.

V ar(a1 a2 ...)
′ = Iσ2

a.

V ar(e11 e12 ...)
′ = Iσ2

e .

Suppose we know that σ2
a/σ

2
e = α. Then

G = Iσ2
a = Iα σ2

e .

R = Iσ2
e .

Then by the notation of (1)
G∗ = Iα, R∗ = I.

1 BLUE and BLUP

Let us write the GLS equations with the notation of (1).

V = ZGZ′ + R

= (ZG∗Z
′ + R∗)σ

2
e

= V∗σ
2
e .

1



Then X′V−1Xβo = X′V−1y can be written as

σ−2
e X′V−1

∗ Xβo = X′V−1
∗ yσ−2

e . (2)

Multiplying both sides by σ2
e we obtain a set of equations that can be written as,

X′V−1
∗ Xβo = X′V−1

∗ y. (3)

Then BLUE of K′β is K′βo, where βo is any solution to (3).

Similarly the mixed model equations with each side multiplied by σ2
e are(

X′R−1
∗ X X′R−1

∗ Z
Z′R−1

∗ X Z′R−1
∗ Z + G−1

∗

)(
βo

û

)
=

(
X′R−1

∗ y
Z′R−1

∗ y

)
. (4)

û is BLUP of u when G∗ and R∗ are known.

To find the sampling variance of K′βo we need a g-inverse of the matrix of (2). This
is

(X′V−1
∗ X)− σ2

e .

Consequently,

V ar(K′βo) = K′(X′V−1
∗ X)−Kσ2

e . (5)

Also
V ar(K′βo) = K′C11Kσ

2
e ,

where C11 is the upper p2 submatrix of a g-inverse of the matrix of (4). Similarly all of
the results of (34) to (41) in Chapter 5 are correct if we multiply them by σ2

e .

Of course σ2
e is unknown, so we can only estimate the variance by substituting some

estimate of σ2
e , say σ̂2

e , in (5). There are several methods for estimating σ2
e , but the most

frequently used one is the minimum variance, translation invariant, quadratic, unbiased
estimator computed by

[y′V−1
∗ y − (βo)′X′V−1

∗ y]/[n− rank(X)] (6)

or by

[y′R−1
∗ y − (βo)′X′R−1

∗ y − û′Z′R−1
∗ y]/[n− rank(X)]. (7)

A more detailed account of estimation of variances is presented in Chapters 10, 11, and
12.

Next looking at BLUP of u under model (1), it is readily seen that û of (4) is BLUP.
Similarly variances and covariances involving û and û − u are easily derived from the
results for known G and R. Let (

C11 C12

C12 C22

)

2



be a g-inverse of the matrix of (4). Then

Cov(K′βo, û′ − u′) = K′C12σ
2
e , (8)

V ar(û) = (G∗ − C22)σ
2
e , (9)

V ar(û− u) = C22σ
2
e . (10)

2 Tests of Hypotheses

In the same way in which G and R known to proportionality pose no problems in
BLUE and BLUP, exact tests of hypotheses regarding β can be performed, assuming as
before a multivariate normal distribution. Chapter 4 describes computation of a quadratic,
s, that is distributed as χ2 with m − a degrees of freedom when the null hypothesis is
true, and m and a are the number of rows in H

′
0 and H

′
a respectively. Now we compute

these quadratics exactly as in these methods except that V∗, G∗, R∗ are substituted for
V, G, R. Then when the null hypothesis is true, s/σ̂2

e(m − a) is distributed as F with
m− a, and n−rank (X) degrees of freedom, where σ̂2

e is computed by (6) or (7).

3 Power Of The Test Of Null Hypotheses

Two different types of errors can be made in tests of hypotheses. First, the null hypothesis
may be rejected when in fact it is true. This is commonly called a Type 1 error. Second,
the null hypothesis may be accepted when it is really not true. This is called a Type 2
error, and the power of the test is defined as 1 minus the probability of a Type 2 error.
The results that follow regarding power assume that G∗ and R∗ are known.

The power of the test can be computed only if

1. The true value of β for which the power is to be determined is specified. Different
values of β give different powers. Let this value be βt. Of course we do not know
the true value, but we may be interested in the power of the test, usually for some
minimum differences among elements of β. Logically βt must be true if the null and
the alternative hypotheses are true. Accordingly a βt must be chosen that violates
neither H′0β = c0 nor H

′
aβ = ca.

2. The probability of the type 1 error must be specified. This is often called the chosen
significance level of the test.

3. The value of σ̂2
e must be specified. Because the power should normally be computed

prior to the experiment, this would come from prior research. Define this value as
d.
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4. X and Z must be specified.

Then let

A = significance level

F1 = m− a = numerator d.f.

F2 = n− rank(X) = denominator d.f.

Compute 4 = the quadratic, s, but with Xβt substituted for y in the computations.
Compute

P = [4/(m− a+ 1)d]1/2 (11)

and enter Tiku’s table (1967) with A, F1, F2, P to find the power of the test.

Let us illustrate computation of power by a simple one-way fixed model,

yij = µ+ ti + eij,

i = 1, 2, 3.

V ar(e) = Iσ2
e .

Suppose there are 3,2,4 observations respectively on the 3 treatments. We wish to test

H
′

0β = 0,

where

H
′

0 =

(
0 1 0 −1
0 0 1 −1

)
,

against the unrestricted hypothesis.

Suppose we want the power of the test for β
′

t = [10, 2, 1,−3] and σ2
e = 12. That

is, d = 12. Then
(Xβt)

′ = [12, 12, 12, 11, 11, 7, 7, 7, 7].

As we have shown, the reduction under the null hypothesis in this case can be found from
the reduced model E(y) = µ0. The OLS equations are

9 3 2 4
3 3 0 0
2 0 2 0
4 0 0 4


(
µo

to

)
=


86
36
22
28

 .

A solution is (0, 12, 11, 7), and reduction = 870. The restricted equations are

9 µo = 86,

4



and the reduction is 821.78. Then s = 48.22 = 4. Let us choose A = .05 as the
significance level

F1 = 2− 0 = 2.

F2 = 9− 3 = 6.

P =
48.22

3(12)
= 1.157.

Entering Tiku’s table we obtain the power of the test.
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Chapter 7
Known Functions of Fixed Effects

C. R. Henderson

1984 - Guelph

In previous chapters we have dealt with linear relationships among β of the
following types.

1. M′β is a set of p-r non-estimable functions of β , and a solution to GLS or mixed
model equations is obtained such that M′βo = c.

2. K′β is a set of r estimable functions. Then we write a set of equations, the solution
to which yields directly BLUE of K′β.

3. H′β is a set of estimable functions that are used in hypothesis testing.

In this chapter we shall be concerned with defined linear relationships of the form,

T′β = c.

All of these are linearly independent. The consequence of these relationships is that
functions of β may become estimable that are not estimable under a model with no
such definitions concerning β . In fact, if T′β represents p − r linearly independent
non-estimable functions, all linear functions of β become estimable.

1 Tests of Estimability

If T′β represents t < p − r non-estimable functions the following rule can be used to
determine what functions are estimable.(

X
T′

)
C = 0, (1)

where C is a p× (r − t) matrix with rank r − t. C always exists. Then K′β is estimable
if and only if

K′C = 0. (2)
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To illustrate, suppose that

X =



1 2 3 1
2 1 3 5
1 3 4 0
3 2 5 7
1 1 2 2
2 1 3 5


.

with p = 4, and r = 2 becuase

X


1 3
1 −1
−1 0

0 −1

 = 0

Suppose we define T′ = (1 2 2 1). This is a non-estimable function because

(1 2 2 1)


1 3
1 −1
−1 0

0 −1

 = (1 0) 6= 0.

Now

(
X
T′

)
C =



1 2 3 1
2 1 3 5
1 3 4 0
3 2 5 7
1 1 2 2
2 1 3 5
1 2 2 1




3
−1

0
−1

 = 0.

Therefore K′β is estimable if and only if K′(3 − 1 0 − 1)′ = 0. If we had defined

T′ =

(
1 2 2 1
2 1 1 3

)
,

any function of β would be estimable because rank

(
X
T′

)
= 4. This is because p− r =

4− 2 non-estimable functions are defined.
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2 BLUE when β Subject to T′β

One method for computing BLUE of K′β, estimable given T′β = c, is K′βo, where βo is
a solution to either of the following.(

X′V−1X T
T′ 0

)(
βo

θ

)
=

(
X′V−1y

c

)
. (3)

 X′R−1X X′R−1Z T
Z′R−1X Z′R−1Z + G−1 0
T′ 0 0


 βo

û
θ

 =

 X′R−1y
Z′R−1y

c

 . (4)

If T′β represents p − r linearly independent non-estimable functions, βo has a unique
solution. A second method where c = 0 is the following. Partition T′, with re-ordering
of columns if necessary, as

T′ = [T
′

1 T
′

2],

the re-ordering done, if necessary, so that T
′
2 is non-singular. This of course implies that

T2 is square. Partition X = [X1 X2], where X2 has the same number of columns as T
′
2

and with the same re-ordering of columns as in T′. Let

W = X1 −X2(T
′
2)
−1T

′

1.

Then solve for βo, in either of the following two forms.

W′V−1Wβo
1 = W′V−1y. (5)(

W′R−1W W′R−1Z
Z′R−1W Z′R−1Z + G−1

)(
βo

1

û

)
=

(
W′R−1y
Z′R−1y

)
(6)

In terms of the model with no definitions on the parameters,

E(βo
1) = (W′V−1W)−W′V−1Xβ. (7)

βo
2 = −(T

′

2)
−1T

′

1β
o
1. (8)

E(βo
2) = −(T

′

2)
−1T′1E(βo

1). (9)

Let us illustrate with the same X used for illustrating estimability when T′β is
defined. Suppose we define

T′ =

(
1 2 2 1
2 1 1 3

)
, c = 0.

then T′β are non-estimable functions. Consequently the following GLS equations have a
unique solution. It is assumed that V ar(y) = Iσ2

e . The equations are

σ−2
e



20 16 36 44 1 2
16 20 36 28 2 1
36 36 72 72 2 1
44 28 72 104 1 3
1 2 2 1 0 0
2 1 1 3 0 0


(

βo

θ

)
=



46
52
98
86
0
0


σ−2

e . (10)
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and y′ = [5, 3, 7, 2, 6, 8].

The solution is [380, −424, 348, −228, 0, 0]/72. If T′β = 0 is really true, any linear
function of β is estimable.

By the method of (5)

X
′

1 =

(
1 2 1 3 1 2
2 1 3 2 1 1

)
,

X
′

2 =

(
3 3 4 5 2 3
1 5 0 7 2 5

)
,

T
′

1 =

(
1 2
2 1

)
, T

′

2 =

(
2 1
1 3

)
,

then

W′ =

(
−.2 −1.6 .2 −2.2 −.6 −1.6
−1.0 −2.0 −1.0 −3.0 −1.0 −2.0

)
.

Equations like (5) are

σ−2
e

(
10.4 13.6
13.6 20.0

)
βo

1 =

(
−25.2
−46.0

)
σ−2

e .

The solution is βo
1 = (380, -424)/72. By (8)

βo
2 = −

(
.2 1.0
.6 0

) (
380
−424

)
/72 =

(
348
−228

)
/72.

These are identical to the result by method (3). E(βo
1) by (7) is(

0 2.5 2.5 −2.5
−1.0 −2.5 −3.5 −.5

)
β.

It is easy to verify that these are estimable under the restricted model.

At this point it should be noted that the computations under T′β = c, where these
represent p−r non-estimable functions are identical with those previously described where
the GLS or mixed model equation solution is restricted to M′βo = c. However, all linear
functions of β are estimable under the restriction regarding parameters whereas they are
not when these restrictions are on the solution, βo. Restrictions M′βo = c are used only
for convenience whereas T′β = c are used because that is part of the model.

Now let us illustrate with our same example, but with only one restriction, that being

(2 1 1 3) β = 0.
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Then equations like (3) are

σ−2
e


20 16 36 44 2
16 20 36 28 1
36 36 72 72 1
44 28 72 104 3
2 1 1 3 0


(

βo

θ

)
=


46
52
98
86
0

 σ−2
e .

These do not have a unique solution, but one solution is (-88, 0, 272, -32, 0)/144. By the
method of (5)

T
′

1 = (2 1 1),

T
′

2 = 3.

This leads to

9−1σ−2
e

 68 52 −32
52 116 128
−32 128 320

 βo
1 =

 −102
210
624

 9−1σ−2
e .

These do not have a unique solution but one solution is (-88 0 272)/144 as in the other
method for βo

1.

3 Sampling Variances

If the method of (3) is used,

V ar(K′βo) = K′C11K, (11)

where C11 is the upper p2 submatrix of a g-inverse of the coefficient matrix. The same is
true for (4).

If the method of (5) is used

V ar(K
′

1β
o
1) = K

′

1(W
′V−1W)−K1. (12)

Cov(K
′

1β
o
1,β

o′

2 K2) = −K
′

1(W
′V−1W)−T1T

−1
2 K2. (13)

V ar(K
′

2β
o
2) = K

′

2(T
′

2)
−1T

′

1(W
′V−1W)−T1T

−1
2 K2. (14)

If the method of (6) is used, the upper part of a g-inverse of the coefficient matrix is used
in place of (11).

Let us illustrate with the same example and with one restriction. A g-inverse of the
coefficient matrix is

σ2
e

576


0 0 0 0 0
0 80 −32 −16 576
0 −32 29 1 −432
0 −16 1 5 144
0 576 −432 144 0

 .
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Then

V ar(K′βo) =
σ2

e

576
K′

 0 80 −32 −16
0 −32 29 1
0 −16 1 5

 K.

Using the method of (5) a g-inverse of W′V−1W is 0 0 0
0 80 −32
0 −32 29

 σ2
e

576
,

which is the same as the upper 3× 3 of the matrix above. From (13)

−(W′V−1W)−T1T
−1
2 = − 1

576

 0 0 0
0 80 −32
0 −32 29


 2

1
1

 1

3
=

 0
16
1

 1

576

and for (14) (T
′
2)
−1T

′
1(W

′V−1W)−T1T
−1
2 = 5/576, thus verifying that the sampling

variances are the same by the two methods.

4 Hypothesis Testing

As before let H
′
0β = c0 be the null hypothesis and H

′
aβ = ca be the alternative hypothesis,

but now we have defined T′β = c. Consequently H
′
0β and H

′
aβ need be estimable only

when T′β = c is assumed.

Then the tests proceed as in the unrestricted model except that for the null hypothesis
computations we substitute(

H
′
0

T′

)
β −

(
c0

c

)
for H0β − c0. (15)

and for the alternative hypothesis we substitute(
H

′
a

T′

)
β −

(
ca

c

)
for H

′

aβ − ca. (16)

To illustrate suppose the unrestrained GLS equations are
6 3 2 1
3 7 1 2
2 1 8 1
1 2 1 9

 βo =


9

12
15
16

 .
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Suppose that we define T′β = 0 where T′ = (3 1 2 3).

We wish to test H
′
0β = 0, where

H
′

0 =

(
1 2 1 0
2 1 0 1

)

against H
′
aβ = 0, where H

′
a = [1 -1 -1 1]. Note that (-1 1) H

′
0 = H

′
a and both are

estimable. Therefore these are valid hypotheses. Using the reduction method we solve

6 3 2 1 1 3
3 7 1 2 −1 1
2 1 8 1 −1 2
1 2 1 9 1 3
1 −1 −1 1 0 0
3 1 2 3 0 0


(

βa

θa

)
=



9
12
15
16
0
0


.

The solution is [-1876, 795, -636, 2035, -20035, 20310]/3643, and the reduction under H
′
a

is 15676/3643 = 4.3030. Then solve

6 3 2 1 1 2 3
3 7 1 2 2 1 1
2 1 8 1 1 0 2
1 2 1 9 0 1 3
1 2 1 0 0 0 0
2 1 0 1 0 0 0
3 1 2 3 0 0 0



(
β0

θ0

)
=



9
12
15
16
0
0
0


.

The solution is [-348, 290, -232, 406, 4380, -5302, 5088]/836, and the reduction is 3364/836
= 4.0239. Then we test 4.3030 - 4.0239 = .2791 entering χ2 with 1 degree of freedom
coming from the differences between the number of rows in H

′
0 and H

′
a.

By the method involving V ar(H
′
oβ) and V ar(H

′
aβ) we solve the following equations

and find a g-inverse of the coefficient matrix.
6 3 2 1 3
3 7 1 2 1
2 1 8 1 2
1 2 1 9 3
3 1 2 3 0


(

βo

θ0

)
=


9

12
15
16
0

 .

The solution is [-7664, 8075, 5561, 1265, 18040]/4972. The inverse is
624 −276 −336 −308 1012

887 53 −55 −352
659 −121 220

407 616
−2024

 /4972.
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Now
H

′

0β
o = [2.82522 − 1.20434]′,

H
′

0C11H0 =

(
.65708 .09735

.27031

)
,

and

(H
′

0C11H0)
−1 =

(
1.60766 −.57895

3.90789

)
= B,

where C11 is the upper 4× 4 submatrix of the inverse of the coefficient matrix. Then

[2.82522 − 1.20434] B [2.8522 − 1.20434]′ = 22.44007.

Similarly computations with H
′
a = (1 -1 -1 1), give H

′
aβa = -4.02957, B = 1.36481, and

(−4.02957)B(−4.02957) = 22.16095. Then 22.44007 - 22.16095 = .2791 as before.
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Chapter 8
Unbiased Methods for G and R Unknown

C. R. Henderson

1984 - Guelph

Previous chapters have dealt with known G and R or known proportionality
of these matrices. In these cases BLUE, BLUP, exact sampling variances, and exact tests
of hypotheses exist. In this chapter we shall be concerned with the unsolved problem of
what are ”best” estimators and predictors when G and R are unknown even to propor-
tionality. We shall construct many unbiased estimators and predictors and under certain
circumstances compute their variances. Tests of hypotheses pose more serious problems,
for only approximate tests can be made. We shall be concerned with three different
situations regarding estimation and prediction. These are described in Henderson and
Henderson (1979) and in Henderson, Jr. (1982).

1. Methods of estimation and prediction not involving G and R.

2. Methods involving G and R in which assumed values, say G̃ and R̃ are used in the
computations and these are regarded as constants.

3. The same situation as 2, but G̃ and R̃ are regarded more realistically as estimators
from data and consequently are random variables.

1 Unbiased Estimators

Many unbiased estimators of K′β can be computed. Some of these are much easier
than GLS or mixed models with G̃ and R̃ used. Also some of them are invariant to G̃
and R̃. The first, and one of the easiest, is ordinary least squares (OLS) ignoring u.

Solve for βo in
X′Xβo = X′y. (1)

Then E(K′βo) = E[K′(X′X)−X′y] = K′(X′X)−X′Xβ = K′β if K′β is estimable. The
variance of K′βo is

K′(X′X)−X′(ZGZ′ + R)X(X′X)−K, (2)

and this can be evaluated easily for chosen G̃, R̃, but it is valid only if G̃ and R̃ are
regarded as fixed.

1



A second estimator is analogous to weighted least squares. Let D be a diagonal

matrix formed from the diagonals of (ZG̃Z
′
+ R̃). Then solve

X′D−1Xβo = X′D−1y. (3)

K′βo is an unbiased estimator of K′β if estimable.

V ar(K′βo) = K′(X′D−1X)−X′D−1(ZGZ′ + R)D−1X(X′D−1X)−K. (4)

A third possibility if R̃−1 is easy to compute, but Ṽ−1 is not easy, is to solve

X′R̃−1Xβo = XR̃−1y. (5)

V ar(K′βo) = K′(X′R̃−1X)−X′R̃−1(ZGZ′ + R)R̃−1X(X′R̃−1X)−K. (6)

These methods all would seem to imply that the diagonals of G−1 are large relative
to diagonals of R−1.

Other methods would seem to imply just the opposite, that is, the diagonals of
G−1 are small relative to R−1. One of these is OLS regarding u as fixed for purposes of
computation. That is solve(

X′X X′Z
Z′X Z′Z

)(
βo

uo

)
=

(
X′y
Z′y

)
. (7)

Then if K′β is estimable under a fixed u model, K′βo is an unbiased estimator of K′β.
However, if K′β is estimable under a random u model, but is not estimable under a
fixed u model, K′βo may be biased. To forestall this, find a function K′β + M′u that is
estimable under a fixed u model. Then K′βo + M′uo is an unbiased estimator of K′β.

V ar(K′βo + M′uo) = [K′ M′]CW′(ZGZ′ + R)WC

(
K
M

)
(8)

= (K′ M′)CW′RWC

(
K
M

)
+ M′GM, (9)

where C is a g-inverse of the matrix of (7) and W = (X Z).

The method of (9) is simpler than (8) if R has a simple form compared to ZGZ′. In
fact, if R = Iσ2

e , the first term of (9) becomes

(K′ M′)C

(
K
M

)
σ2

e . (10)

Analogous estimators would come from solving(
X′R̃−1X X′R̃−1Z

Z′R̃−1X Z′R̃−1Z

)(
βo

uo

)
=

(
X′R̃−1y

Z′R̃−1y

)
. (11)
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Another one would use D−1 in place of R−1 where D is a diagonal matrix formed
from the diagonals of R̃. In both of these last two methods K′βo + M′uo would be the
estimator of K′β, and we require that K′β + M′u be estimable under a fixed u model.

From (11)

V ar(K′βo + M′uo) = (K′ M′)CW′R̃−1(ZGZ′ + R)R̃−1WC

(
K
M

)

= (K′ M′)CW′R̃−1RR̃−1WC

(
K
M

)
+M′GM. (12)

When D−1 is substituted for R̃−1 the expression in (12) is altered by making this same
substitution.

Another method which is a compromise between (1) and (11) is to ignore a subvector
of u, say u2, then compute by OLS regarding the remaining subvector of u, say u1, as
fixed. The resulting equations are(

X′X X′Z1

Z
′
1X Z

′
1Z1

)(
βo

uo
1

)
=

(
X′y
Z

′
1y

)
. (13)

(Z1 Z2) is a partitioning of Z corresponding to u′ = (u
′
1 u

′
2). Now to insure unbiasedness

of the estimator of K′β we need to find a function,

K′β + M′u1,

that is estimable under a fixed u1 model. Then the unbiased estimator of K′β is

K′βo + M′uo
1,

The variance of this estimator is

(K′ M′)CW′(ZGZ′ + R)WC

(
K
M

)
. (14)

W = (X Z1), and ZGZ′ refers to the entire Zu vector, and C is some g-inverse of the
matrix of (13).

Let us illustrate some of these methods with a simple example.

X′ = [1 1 1 1 1],

Z′ =

 1 1 0 0 0
0 0 1 1 0
0 0 0 0 1

 , R = 15I, G = 2I,
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y′ = [6 8 7 5 7].

V ar(y) = ZGZ′ + R =


17 2 0 0 0

17 0 0 0
17 2 0

17 0
17

 .

β is estimable. By the method of (1) we solve

5βo = 33.

βo = 6.6.

V ar(βo) = .2 (1 1 1 1 1) Var (y)


1
1
1
1
1

 .2 = 3.72.

By the method of (7) the equations to be solved are
5 2 2 1

2 0 0
2 0

1


(

βo

uo

)
=


33
14
12
7

 .
A solution is (0, 7, 6, 7). Because β is not estimable when u is fixed, we need some

function with k′ = 1 and m′ such that (k′ m′)

(
β
u

)
is estimable. A possibility is

(3 1 1 1)/3. The resulting estimate is 20/3 6= 6.6, our previous estimate. To find the
variance of the estimator by method (8) we can use a g-inverse.

0 0 0 0
.5 0 0

.5 0
1

 .

(k′ m′)CW′ =
1

3
(3 1 1 1)


0 0 0 0

.5 0 0
.5 0

1




1 1 1 1 1
1 1 0 0 0
0 0 1 1 0
0 0 0 0 1

 =
1

6
(1 1 1 1 2).
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Then V ar(βo) = 4 6= 3.72 of previous result. By the method of (9) we obtain
3.333 + .667 = 4 also.

BLUE would be obtained by using the mixed model equations with R = 15I,
G = 2I if these are the true values of R and G. The resulting equations are

1

15


5 2 2 1
2 9.5 0 0
2 0 9.5 0
1 0 0 8.5


(

βo

u

)
=


33
14
12
7

 /15.

βo = 6.609.

The upper 1× 1 of a g-inverse is 3.713, which is less than for any other methods, but
of course depends upon true values of G and R.

2 Unbiased Predictors

The method for prediction of u used by most animal breeders prior to the recent
general acceptance of the mixed model equations was selection index (BLP) with some
estimate of Xβ regarded as a parameter value. Denote the estimate of Xβ by Xβ̃. Then
the predictor of u is

ũ = G̃Z′Ṽ−1(y −Xβ̃). (15)

G̃ and Ṽ are estimated G and V.

This method utilizes the entire data vector and the entire variance-covariance struc-
ture to predict. More commonly a subset of y was chosen for each individual element of
u to be predicted, and (15) involved this reduced set of matrices and vectors.

Now if Xβ̃ is an unbiased estimator of Xβ, E(ũ) = 0 = E(u) and is unbiased. Even
if G and R were known, (15) would not represent a predictor with minimum sampling
variance. We have already found that for this β̃ should be a GLS solution. Further,
in selection models (discussed in chapter 13), usual estimators for β such as OLS or
estimators ignoring u are biased, so ũ is no longer an unbiased predictor.

Another unbiased predictor, if computed correctly, is ”regressed least squares” first
reported by Henderson (1948). Solve for uo in equations (16).(

X′X X′Z
Z′X Z′Z

) (
βo

uo

)
=

(
X′y
Z′y

)
(16)
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Take a solution for which E(uo) = 0 in a fixed β but random u model. This can be
done by ”absorbing” βo to obtain a set of equations

Z′PZ uo = Z′Py, (17)

where
P = [I−X(X′X)−X′].

Then any solution to uo, usually not an unique solution, has expectation 0, because
E[I−X(X′X)−X′]y = (X−X(X′X)−X′X)β = (X−X)β = 0. Thus uo is an unbiased
predictor, but not a good one for selection, particularly if the amount of information
differs greatly among individuals.

Let some g-inverse of Z′PZ be defined as C. Then

V ar(uo) = CZ′P(ZGZ′ + R)PZC, (18)

Cov(u,uo) = GZ′PZC. (19)

Let the ith diagonal of (18) be vi, and the ith diagonal of (19) be ci, both evaluated by
some estimate of G and R. Then the regressed least square prediction of ui is

ciu
o
i/vi. (20)

This is BLP of ui when the only observation available for prediction is uo
i . Of course other

data are available, and we could use the entire uo vector for prediction of each ui. That
would give a better predictor because (18) and (19) are not diagonal matrices.

In fact, BLUP of u can be derived from uo. Denote (18) by S and (19) by T. Then
BLUP of u is

TS−uo, (21)

provided G and R are known. Otherwise it would be approximate BLUP.

This is a cumbersome method as compared to using the mixed model equations,
but it illustrates the reason why regressed least squares is not optimum. See Henderson
(1978b) for further discussion of this method.

3 Substitution Of Fixed Values For G And R

In the methods presented above it appears that some assumption is made concerning
the relative values of G and R. Consequently it seems logical to use a method that
approaches optimality as G̃ and R̃ approach G and R. This would be to substitute
G̃ and R̃ for the corresponding parameters in the mixed model equations. This is a
procedure which requires no choice among a variety of unbiased methods. Further, it has
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the desirable property that if G̃ and R̃ are fixed, the estimated sampling variance and
prediction error variances are simple to express. Specifically the variances and covariances
estimated for G = G̃ and R = R̃ are precisely the results in (34) to (41) in Chapter 5.

It also is true that the estimators and predictors are unbiased. This is easy to prove
for fixed G̃ and R̃ but for estimated (random) G̃ and R̃ we need to invoke a result by
Kackar and Harville (1981) presented in Section 4. For fixed G̃ and R̃ note that after
”absorbing” u from the mixed model equations we have

X′Ṽ−1Xβo = X′Ṽ−1y.

Then

E(K′βo) = E(K′(X′Ṽ−1X)−X′Ṽ−1y)

= K′(X′Ṽ−1X)−X′Ṽ−1Xβ

= K′β.

Also
û = (Z′R̃−1Z + G̃−1)−1Z′R̃−1(y −Xβo).

But Xβo is an unbiased estimator of Xβ, y−Xβo with expectation 0 and consequently
E(û) = 0 and is unbiased.

4 Mixed Model Equations With Estimated G and R

It is not a trivial problem to find the expectations of K′βo and û from mixed model
equations with estimated G and R. Kackar and Harville (1981) derived a very important
result for this case. They prove that if G and R are estimated by a method having the
following properties and substituted in mixed model equations, the resulting estimators
and predictors are unbiased. This result requires that

1. y is symmetrically distributed, that is, f(y) = f(−y).

2. The estimators of G and R are translation invariant.

3. The estimators of G and R are even functions of y.

These are not very restrictive requirements because they include a variety of distributions
of y and most of the presently used methods for estimation of variances and covariances.

An interesting consequence of substituting ML estimates of G and R for the corre-
sponding parameters of mixed model equations is that the resulting K′βo are ML and the
û are ML of (u | y).
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5 Tests Of Hypotheses Concerning β

We have seen that unbiased estimators and predictors can be obtained even though
G and R are unknown. When it comes to testing hypotheses regarding β little is known
except that exact tests do not exist apart from a special case that is described below.
The problem is that quadratics in H′βo − c appropriate for exact tests when G and
R are known, do not have a χ2 or any other tractable distribution when G̃, R̃ replace
G, R in the computation. What should be done? One possibility is to estimate, if
possible G, R,β by ML and then invoke a likelihood ratio test, in which under normality
assumptions and large samples, -2 log likelihood ratio is approximated by χ2. This raises
the question of what is a large sample of unbalanced data. Certainly n → ∞ is not
a sufficient condition. Consideration needs to be given to the number of levels of each
subvector of u and to the proportion of missing subclasses. Consequently the value of a
χ2 approximation to the likelihood ratio test is uncertain.

A second and easier approximation is to pretend that G̃ = G and R̃ = R and
proceed to an approximate test using χ2 as described in Chapter 4 for hypothesis testing
with known G, R and normality assumptions. The validity of this test must surely
depend, as it does in the likelihood ratio approximation, upon the number of levels of u
and the balance and lack of missing subclasses.

One interesting case exists in which exact tests of β can be made even when we do
not know G and R to proportionality. The requirements are as follows

1. V ar(e) = Iσ2
e , and

2. H
′
0β is estimable under a fixed u model.

Solve for βo in equations (7). Then

V ar(H
′

0β
o) = H

′

0C11H0σ
2
e (22)

where C11 is the upper p × p submatrix of a g-inverse of the coefficient matrix. Then
under the null hypothesis versus the unrestricted hypothesis

(H
′

0β
o) ′ [H

′

0C11 H0]
−1 H

′

0β
o/sσ̂2

e (23)

is distributed as F with degrees of freedom s, n−rank (X Z). σ̂2
e is an estimate of σ2

e

computed by
(y′y − (βo)′X′y − (uo)′Z′y)/[n− rank(X Z)], (24)

and s is the number of rows, linearly independent, in H
′
0.
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Chapter 9
Biased Estimation and Prediction

C. R. Henderson

1984 - Guelph

All methods for estimation and prediction in previous chapters have been unbi-
ased. In this chapter we relax the requirement of unbiasedness and attempt to minimize
the mean squared error of estimation and prediction. Mean squared error refers to the sum
of prediction error variance plus squared bias. In general, biased predictors and estima-
tors exist that have smaller mean squared errors than BLUE and BLUP. Unfortunately,
we never know what are truly minimum mean squared error estimators and predictors
because we do not know some of the parameters required for deriving them. But even
for BLUE and BLUP we must know G and R at least to proportionality. Additionally
for minimum mean squared error we need to know squares and products of β at least
proportionally to G and R.

1 Derivation Of BLBE And BLBP

Suppose we want to predict k
′
1β1 + k

′
2β2 + m′u by a linear function of y, say a′y,

such that the predictor has expectation k
′
1β1 plus some function of β2, and in the class

of such predictors, has minimum mean squared error of prediction, which we shall call
BLBP (best linear biased predictor).

The mean squared error (MSE) is

a′Ra + (a′X2 − k
′

2)β2β
′

2(X
′

2a− k2) + (a′Z−m′)G(Z′a−m). (1)

In order that E(a′y) contains k
′
1β1 it is necessary that a′X1β1 = k

′
1β1, and this will be

true for any β1 if a′X1 = k
′
1. Consequently we minimize (1) subject to this condition.

Differentiating (1) with respect to a and to an appropriate Lagrange Multiplier, we have
equations (2) to solve.(

V + X2β2β
′

2X
′
2 X1

X
′
1 0

)(
a
θ

)
=

(
ZGm + X2β2β

′

2k2

k1

)
. (2)

a has a unique solution if and only if k
′
1β1 is estimable under a model in which E(y)

contains X1β1. The analogy to GLS of β1 is a solution to (3).

X
′

1(V + X2β2β
′

2X
′

2)
−1X1β

∗
1 = X

′

1(V + X2β2β
′

2X
′

2)
−1y. (3)

1



Then if K
′
1β1 is estimable under a model, E(y) containing X1β1, K

′
1β
∗
1 is unique and is

the minimum MSE estimator of K
′
1β1. The BLBE of β2 is

β2β
′

2X
′

2(V + X2β2β
′

2X
′

2)
−1(y −X1β

∗
1) (4)

≡ β∗2, and this is unique provided K1β1 is estimable when E(y) contains X1β1. The
BLBP of u is

u∗ = GZ′(V + X2β2β
′

2X
′

2)
−1(y −X1β

∗
1), (5)

and this is unique. Furthermore BLBP of

K
′

1β1 + K
′

2β2 + M′u is K
′

1β
∗
1 + K

′

2β
∗
2 + M′u∗. (6)

We know that BLUE and BLUP can be computed from mixed model equations.
Similarly β∗1, β∗2, and u∗ can be obtained from modified mixed model equations (7), (8),
or (9). Let β2β

′

2 = P. Then with P singular we can solve (7). X
′
1R
−1X1 X

′
1R
−1X2 X

′
1R
−1Z

PX
′

2R
−1X1 PX

′

2R
−1X2 + I PX

′

2R
−1Z

Z′R−1X1 Z′R−1X2 Z′R−1Z + G−1


 β∗1

β∗2
u∗

 =

 X
′
1R
−1y

PX
′

2R
−1y

Z′R−1y

 (7)

The rank of this coefficient matrix is rank (X1)+p2+q, where p2 = the number of elements
in β2. The solution to β∗2 and u∗ is unique but β∗1 is not unless X1 has full column rank.
Note that the coefficient matrix is non-symmetric. If we prefer a symmetric matrix, we
can use equations (8). X

′
1R
−1X1 X

′
1R
−1X2P X

′
1R
−1Z

PX
′

2R
−1X1 PX

′

2R
−1X2P + P PX

′

2R
−1Z

Z′R−1X1 Z′R−1X2P Z′R−1Z + G−1


 β∗1

α∗2
u∗

 =

 X
′
1R
−1y

PX
′

2R
−1y

Z′R−1y

 (8)

Then β∗2 = Pα∗2. The rank of this coefficient matrix is rank (X1) + rank (P) + q. K
′
1β
∗
1,

β∗2, and u∗ are identical to the solution from (7). If P were non-singular we could use
equations (9).  X

′
1R
−1X1 X

′
1R
−1X2 X

′
1R
−1Z

X
′
2R
−1X1 X

′
2R
−1X2 + P−1 X

′
2R
−1Z

Z′R−1X1 Z′R−1X2 Z′R−1Z + G−1


 β∗1

β∗2
u∗

 =

 X
′
1R
−1y

X
′
2R
−1y

Z′R−1y

 (9)
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The rank of this coefficient matrix is rank (X1) + p2 + q.

Usually R, G, and P are unknown, so we need to use guesses or estimates of them,
say R̃, G̃, and P̃. These would be used in place of the parameter values in (2) through
(9).

In all of these except (9) the solution to β∗2 has a peculiar and seemingly undesirable
property, namely β∗2 = kβ̃2, where k is some constant. That is, the elements of β∗2 are
proportional to the elements of β̃2. Also it should be noted that if, as should always be
the case, P is positive definite or positive semi-definite, the elements of β∗2 are ”shrunken”
(are nearer to 0) compared to the elements of the GLS solution to β2 when X2 is full
column rank. This is comparable to the fact that BLUP of elements of u are smaller in
absolute value than are the corresponding GLS computed as though u were fixed. This
last property of course creates bias due to β2 but may reduce mean squared errors.

2 Use Of An External Estimate Of β

We next consider methods for utilizing an external estimate of β in order to obtain
a better unbiased estimator from a new data set. For this purpose it will be simplest to
assume that in both the previous experiments and the present one the rank of X is r ≤ p
and that the same linear dependencies among columns of X existed in both cases. With
possible re-ordering the full rank subset is denoted by X1 and the corresponding β by β1.
Suppose we have a previous solution to β1 denoted by β∗1 and E(β∗1) = β1 + Lβ2 where
X = (X1 X2) and X2 = (X1L). Further V ar(β∗1) = V1. Assuming logically that the
prior estimator is uncorrelated with the present data vector, y, the GLS equations are

(X
′

1V
−1X1 + V−1

1 )β̂1 = X
′

1V
−1y + V−1

1 β∗1. (10)

Then BLUE of K′β, where K′ has the form (K
′
1 K

′
1L) is K

′
1β̂1, and its variance is

K
′

1(X
′

1V
−1X1 + V−1

1 )−1K1. (11)

The mixed model equations corresponding to (10) are(
X

′
1R
−1X1 + V−1

1 X
′
1R
−1Z

Z′R−1X1 Z′R−1Z + G−1

)(
β̂
û

)
=

(
X

′
1R
−1y + V−1

1 β∗1
Z′R−1y

)
. (12)

3 Assumed Pattern Of Values Of β

The previous methods of this chapter requiring prior values of every element of β
and resulting estimates with the same proportionality as the prior is rather distasteful.
A possible alternative solution is to assume a pattern of values of β with less than p

3



parameters. For example, with two way, fixed, cross-classified factors with interaction we
might assume in some situations that there is no logical pattern of values for interactions.
Defining for convenience that the interactions sum to 0 across each row and each column,
and then considering all possible permutations of the labelling of rows and columns, the
following is true for the average squares and products of these interactions. Define the
interaction for the ijth cell as αij and define the number of rows as r and the number of
columns as c. The average values are as follows.

α2
ij = γ, (13)

αijαij′ = −γ/(c− 1), (14)

αijαi′j = −γ/(r − 1), (15)

αijαi′j′ = γ/(c− 1)(r − 1). (16)

Then if we have some prior value of γ we can proceed to obtain locally minimum
mean squared error estimators and predictors as follows. Let P = estimated average
value of β2 β

′

2. Then solve equations (7), (8) or (9).

4 Evaluation Of Bias

If we are to consider biased estimation and prediction, we should know how to evaluate
the bias. We do this by looking at expectations. A method applied to (7) is as follows.
Remember that K1β

∗
1 is required to have expectation, K

′
1β1+ some linear function of β2.

For this to be true K
′
1β1 must be estimable under a model with X2β2 not existing. β∗2

and u∗ are required to have expectation that is some linear function of β2.

Let some g-inverse of the matrix of (7) be C11 C12 C13

C21 C22 C23

C31 C32 C33

 =

 C1

C2

C3

 . (17)

Then
E(K

′

1β
∗
1) = K

′

1β1 + K
′

1C1Tβ2, (18)

where

T =

 X
′
1R̃
−1X2

PX
′

2R̃
−1X2

Z′R̃−1X2

 .

E(β∗2) = C2Tβ2. (19)

E(u∗) = C3Tβ2. (20)
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Then the biases are as follows.

For K1β
∗
1, bias = K

′

1C1Tβ2. (21)

For β∗2, bias = (C2T− I)β2. (22)

For u∗, bias = C3Tβ2. (23)

If the equations (8) are used, the biases are the same as in (21), (22), and (23) except
that (22) is premultiplied by P, and C refers to a g-inverse of the matrix of (8). If the
equations of (9) are used, the second term of T is X

′
2R̃
−1X2, and C refers to the inverse

of the matrix of (9).

5 Evaluation Of Mean Squared Errors

If we are to use biased estimation and prediction, we should know how to estimate
mean squared errors of estimation and prediction. For the method of (7) proceed as
follows. Let

T =

 X
′
1R̃
−1X2

PX
′

2R̃
−1X2

Z′R̃−1X2

 . (24)

Note the similarity to the second ”column” of the matrix of (7). Let

S =

 X
′
1R̃
−1Z

PX
′

2R̃
−1Z

Z′R̃−1Z

 . (25)

Note the similarity to the third ”column” of the matrix of (7). Let

H =

 X
′
1R̃
−1

PX
′

2R̃
−1

Z′R̃−1

 . (26)

Note the similarity to the right hand side of (7). Then compute C1T
C2T− I
C3T

 β2β
′

2(T
′C

′

1 T′C
′

2 − I T′C
′

3)

+

 C1S
C2S
C3S− I

 G (S′C
′

1 S′C
′

2 S′C
′

3 − I)

+

 C1H
C2H
C3H

 R (H′C
′

1 H′C
′

2 H′C
′

3)
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=

 B11 B12 B13

B21 B22 B23

B31 B32 B33

 = B. (27)

Then mean squared error of

(M
′

1 M
′

2 M
′

3)

 β∗1
β∗2
u∗ − u



= (M
′

1 M
′

2 M
′

3) B

 M1

M2

M3

 . (28)

Of course this cannot be evaluated numerically except for assumed values of β, G, R.
The result simplifies remarkably if we evaluate at the same values used in (7), namely
β2β

′

2 = P̃, G = G̃, R = R̃. Then B is simply

C

 I 0 0
0 P 0
0 0 I

 =

 C11 C12P C13

C21 C22P C23

C31 C32P C33

 . (29)

C and Cij are defined in (9.17).

When the method of (8) is used, modify the result for (7) as follows. Let a g-inverse
of the matrix of (8) be C11 C12 C13

C21 C22 C23

C31 C32 C33

 =

 C1

C2

C3

 = C. (30)

Substitute P̃C2T − I for C2T − I, P̃C2S for C2S, and P̃C2H for C2H and proceed as
in (28) using the Ci from (29). If P = P̃, G = G̃, R = R̃, B simplifies to I 0 0

0 P 0
0 0 I

 C

 I 0 0
0 P 0
0 0 I

 . (31)

If the method of (9) is used, delete P from T, S, and H in (24), (25), and (26), let C
be a g-inverse of the matrix of (9), and then proceed as for method (7). When P = P̃,
G = G̃, and R = R̃, the simple result, B = C can be used.

6 Estimability In Biased Estimation

The traditional understanding of estimability in the linear model is that K′β is
defined as estimable if some linear function of y exists that has expectation K′β, and

6



thus this linear function is an unbiased estimator. But if we relax the requirement of
unbiasedness, is the above an appropriate definition of estimability? Is any function of β
now estimable? It seems reasonable to me to restrict estimation to functions that could
be estimated if we had no missing subclasses. Otherwise we could estimate elements of
β that have no relevance to the experiment in question. For example, treatments involve
levels of protein in the ration. Just because we invoke biased estimation of treatments
would hardly seem to warrant estimation of some treatment that has nothing to do with
level of protein. Consequently we state these rules for functions that can be estimated
biasedly.

1. We want to estimate K
′
1β1 + K

′
2β2, where a prior on β2 is used.

2. If K
′
1β1+K

′
2β2 were estimable with no missing subclasses, this function is a candidate

for estimation.

3. K
′
1β1 must be estimable under a model in which E(y) = X1β1.

4. K
′
1β1 + K

′
2β2 does not need to be estimable in the sample, but must be estimable in

the filled subclass case.

Then K
′
1β

o
1 + K

′
2β

o
2 is invariant to the solution to (7),(8), or (9). Let us illustrate with a

model
yij = µ+ ti + eij , i = 1, 2, 3.

Suppose that the numbers of observations per treatment are (5, 3, 0). However, we are
willing to assume prior values for squares and products of t1, t2, t3 even though we have
no data on t3. The following functions would be estimable if n3 > 0,

 1 1 0 0
1 0 1 0
1 0 0 1



µ
t1
t2
t3

 .

Further with β1 being just µ, and K
′
1 being 1, and X

′
1 = (1 1 1), K

′
1β1 is estimable under

a model E(yij) = µ.

Suppose in contrast that we want to impose a prior on just t3 . Then β
′

1 = (µ t1 t2)
and β2 = t3. Now

K
′

1β
′

1 =

 1 1 0
1 0 1
1 0 0


 µ
t1
t2

 .
But the third row represents a non-estimable function. That is, µ is not estimable under
the model with β

′
1 = (µ t1 t2). Consequently µ+ t3 should not be estimated in this way.
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As another example suppose we have a 2× 3 fixed model with n23 = 0 and all other
nij > 0. We want to estimate all six µij = µ + ai + bj + γij. With no missing subclasses
these are estimable, so they are candidates for estimation. Suppose we use priors on γ.
Then

(K
′

1 K
′

2)

(
β1

β2

)
=



1 1 0 1 0 0 1 0 0 0 0 0
1 1 0 0 1 0 0 1 0 0 0 0
1 1 0 0 0 1 0 0 1 0 0 0
1 0 1 1 0 0 0 0 0 1 0 0
1 0 1 0 1 0 0 0 0 0 1 0
1 0 1 0 0 1 0 0 0 0 0 1





µ
a1

a2

b1
b2
b3
γ


.

Now K
′
1β1 is estimable under a model, E(yijk) = µ + ai + bj. Consequently we can by

our rules estimate all six µij . These will have expectations as follows.

E(µ̂ij) = µ+ ai + bj + some function of γ 6= µ+ ai + bj + γij.

Now suppose we wish to estimate by using a prior only on γ23. Then the last row of
K

′
1β is µ+ a2 + b3 but this is not estimable under a model

E



y11

y12

y13

y21

y22

y23


=



µ+ a1 + b1 + γ11

µ+ a1 + b2 + γ12

µ+ a1 + b3 + γ13

µ+ a2 + b1 + γ21

µ+ a2 + b2 + γ22

µ+ a2 + b3


.

Consequently we should not use a prior on just γ23.

7 Tests Of Hypotheses

Exact tests of hypotheses do not exist when biased estimation is used, but one might
wish to use the following approximate tests that are based on using mean squared error
of K′βo rather than V ar(K′βo).

7.1 V ar(e) = Iσ2
e

When V ar(e) = Iσ2
e write (7) as (32) or (8) as (33). Using the notation of Chapter

6, G = G∗σ
2
e and P = P∗σ

2
e . X

′
1X1 X

′
1X2 X

′
1Z

P̃∗X
′
2X1 P̃∗X

′
2X2 + I P̃∗X

′
2Z

Z′X1 Z′X2 Z′Z + G−1
∗


 β∗1

β∗2
u∗

 =

 X
′
1y

P̃∗X
′
2y

Z′y

 . (32)

8



The corresponding equations with symmetric coefficient matrix are in (33). X
′
1X1 X

′
1X2P̃∗ X

′
1Z

P̃∗X
′
2X1 P̃∗X

′
2X2P̃∗ + P̃∗ P̃∗X

′
2Z

Z′X1 Z′X2P̃∗ Z′Z + G−1
∗


 β∗1

α∗

u∗

 =

 X
′
1y

P̃∗X
′
2y

Z′y

 (33)

Then β∗2 = P̃∗α
∗
2.

Let a g-inverse of the matrix of (32) post-multiplied by I 0 0
0 P 0
0 0 I

 ≡ Q

or a g-inverse of the matrix (33) pre-multipled and post-multiplied by Q be denoted by(
C11 C12

C21 C22

)
,

where C11 has order p× p and C22 has order q× q. Then if P̃∗ = P∗, mean squared error
of K′β∗ is K′C11Kσ

2
e . Then

(K′β∗ − c)′[K′C11K]−1(K′β̂
∗
− c)/s σ̂2

e

is distributed under the null hypothesis approximately as F with s, t degrees of freedom,
where s = number of rows (linearly independent) in K′, and σ̂2

e is estimated unbiasedly
with t degrees of freedom.

7.2 V ar(e) = R

Let g-inverse of (7) post-multiplied by I 0 0
0 P 0
0 0 I

 ≡ Q

or a g-inverse of (8) pre-multiplied and post-multiplied by Q be denoted by(
C11 C12

C21 C22

)
.

Then if R̃ = R, G̃ = G, and P̃ = P, K′C11K is the mean squared error of K′β∗, and
(K′β∗ − c)′(K′C11K)−1(K′β∗ − c) is distributed approximately as χ2 with s degrees of
freedom under the null hypothesis, K′β = c.
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8 Estimation of P

If one is to use biased estimation and prediction, one would usually have to estimate
P, ordinarily a singular matrix. If the elements of β2 are thought to have no particular
pattern, permutation theory might be used to derive average values of squares and prod-
ucts of elements of β2, that is the value of P. We might then formulate this as estimation
of a variance covariance matrix, usually with fewer parameters than t(t+ 1)/2, where t is
the order of P. I think I would estimate these parameters by the MIVQUE method for
singular G described in Section 9 of Chapter 11 or by REML of Chapter 12.

9 Illustration

We illustrate biased estimation by a 3-way mixed model. The model is

yhijk = rh + ci + γhi + uj + eijk,

r, c, γ are fixed, V ar(u) = I/10, V ar(e) = 2I.

The data are as follows:

Levels of j
hi subclasses 1 2 3 yhi..

11 2 1 0 18
12 0 1 1 13
13 1 0 0 7
21 1 2 1 26
22 0 0 1 9
y..j. 25 27 21

We want to estimate using prior values of the squares and products of γhi. Suppose
this is as follows, ordering i within h, and including γ23.

.1 −.05 −.05 −.1 .05 .05
.1 −.05 .05 −.1 .05

.1 .05 .05 −.1
.1 −.05 −.05

.1 −.05
.1


.

The equations of the form X
′
1R
−1X1 X

′
1R
−1X2 X

′
1R
−1Z

X
′
2R
−1X1 X

′
2R
−1X2 X

′
2R
−1Z

Z′R−1X1 Z′R−1X2 Z′R−1Z


 β1

β2

u

 =

 X
′
1R
−1y

X
′
2R
−1y

Z′R−1y
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are presented in (34).

1

2



6 0 3 2 1 3 2 1 0 0 0 3 2 1
5 4 1 0 0 0 0 4 1 0 1 2 2

7 0 0 3 0 0 4 0 0 3 3 1
3 0 0 2 0 0 1 0 0 1 2

1 0 0 1 0 0 0 1 0 0
3 0 0 0 0 0 2 1 0

2 0 0 0 0 0 1 1
1 0 0 0 1 0 0

4 0 0 1 2 1
1 0 0 0 1

0 0 0 0
4 0 0

4 0
3




r
c
γ
u

 =



38
35
44
22
7

18
13
7

26
9
0

25
27
21



1

2
(34)

Note that γ23 is included even though no observation on it exists.

Pre-multiplying these equations by I 0 0
0 P 0
0 0 I

 ≡ T

and adding I to the diagonals of equations (6)-(11) and 10I to the diagonals of equations
(12)-(14) we obtain the coefficient matrix to solve for the biased estimators and predictors.
The right hand side vector is

(19, 17.5, 22, 11, 3.5,−.675, .225, .45, .675,−.225,−.45, 12.5, 13.5, 10.5)′.

This gives a solution of

r∗ = (3.6899, 4.8607),

c∗ = (1.9328, 3.3010, 3.3168),

γ∗ = (.11406,−.11406, 0,−.11406, .11406, 0),

u∗ = (−.00664, .04282,−.03618).

Note that ∑
i
γ∗ij = 0 for i = 1, 2, and∑

j
γ∗ij = 0 for j = 1, 2, 3.
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These are the same relationships that were defined for γ.

Post-multiplying the g-inverse of the coefficient matrix by T we get (35) . . . (38) and
the matrix for computing mean squared errors for M′(r∗, c∗, γ∗, u∗). The lower 9 × 9
submatrix is symmetric and invariant reflecting the fact that γ∗, and u∗ are invariant to
the g-inverse taken.

Upper left 7× 7

.26181 −.10042 .02331 0 .15599 −.02368 .00368
−.05313 .58747 −.22911 0 .54493 .07756 .00244
−.05783 −.26296 .41930 0 −.35232 −.02259 −.00741
.56640 .61368 −.64753 0 −1.02228 .00080 −.03080
−.29989 .13633 .02243 0 2.07553 .07567 .04433
−.02288 .07836 −.02339 0 .07488 .08341 −.03341
−.02712 −.02836 .02339 0 .07512 −.03341 .08341


(35)

Upper right 7× 7

.02 .02368 −.00368 −.02 −.03780 −.01750 −.00469
−.08 −.07756 −.00244 .08 −.01180 −.01276 −.03544
.03 .02259 .00741 −.03 −.01986 −.02631 .00617
.03 −.00080 .03080 −.03 .02588 −.01608 −.04980
−.12 −.07567 −.04433 .12 −.05563 .01213 .00350
−.05 −.08341 .03341 .05 −.00199 .00317 −.00118
−.05 .03341 −.08341 .05 .00199 −.00317 .00118


(36)

Lower left 7× 7

.05 −.05 0 0 −.15 −.05 −.05
.02288 −.07836 .02339 0 −.07488 −.08341 .03341
.02712 .02836 −.02339 0 −.07512 .03341 −.08341
−.05 .05 0 0 .15 .05 .05

−.01192 .01408 −.04574 0 −.08l51 −.00199 .00199
−.03359 −.02884 −.01023 0 .02821 .00317 −.00317
−.05450 −.08524 .05597 0 .05330 −.00118 .00118


(37)

Lower right 7× 7

.10 .05 .05 −.10 0 0 0
.08341 −.03341 −.05 .00199 −.00317 .00118

.08341 −.05 −.00199 .00317 −.00118
.10 0 0 0

.09343 .00537 .00120
.09008 .00455

.09425


(38)
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A g-inverse of the coefficient matrix of equations like (8) is in (39) . . . (41).

This gives a solution (−1.17081, 0, 6.79345, 8.16174, 8.17745, 0, 0, .76038, −1.52076, 0, 0,
−.00664, .04282, −.03618). Premultiplying this solution by T we obtain for β∗1, (-1.17081,
0, 6.79345, 8.16174, 8.17745), and the same solution as before for β∗2 and u∗; β1 is not
estimable so β∗1 is not invariant and differs from the previous solution. But estimable
functions of β1 are the same.

Pre and post-multiplying (39) . . . (41) by T gives the matrix (42) . . . (43). The lower
9 × 9 submatrix is the same as that of (38) associated with the fact that β∗2 and u∗ are
unique to whatever g-inverse is obtained.

Upper left 7× 7

1.00283 0 −.43546 −.68788 −1.07683 0 0
0 0 0 0 0 0

.51469 .32450 .51712 0 0
1.20115 .72380 0 0

3.34426 0 0
0 0

0


(39)

Upper right 7× 7 and (lower left 7× 7)’

.65838 .68324 0 0 −.026 −.00474 .03075
0 0 0 0 0 0 0

−.30020 −.39960 0 0 −.03166 −.03907 −.02927
−.14427 −.71147 0 0 .01408 −.02884 −.08524
−1.64509 −.70981 0 0 −.06743 −.00063 −.03l94

0 0 0 0 0 0 0
0 0 0 0 0 0 0


(40)

Lower right 7× 7

12.59603 −5.19206 0 0 −.01329 .02112 −.00784
10.38413 0 0 .02657 −.04224 .01567

0 0 0 0 0
0 0 0 0

.09343 .00537 .00120
.09008 .00455

.09425


(41)
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Upper left 7× 7

1.00283 0 −.43546 −.68788 −1.07683 −.10124 .00124
0 0 0 0 0 0

.51469 .32450 .51712 .05497 −.00497
1.20115 .72380 .07836 −.02836

3.34426 .15324 .04676
.08341 −.03341

.08341


(42)

Upper right 7× 7 and (lower left 7× 7)’

.1 .10124 −.00124 −.1 −.026 −.00474 .03075
0 0 0 0 0 0 0

−.05 −.05497 .00497 .05 −.03166 −.03907 −.02927
−.05 −.07836 .02836 .05 .01408 −.02884 −.08524
−.2 −.15324 −.04676 .2 −.06743 −.00063 −.03194
−.05 −.08341 .03341 .05 −.00199 .00317 −.00118
−.05 .03341 −.08341 .05 .00199 −.00317 .00118


(43)

Lower right 7× 7 is the same as in (38).

Suppose we wish to estimate K′(β
′

1 β
′

2)
′, which is estimable when the r×c subclasses

are all filled, and

K′ =


6 0 2 2 2 2 2 2 0 0 0
0 6 2 2 2 0 0 0 2 2 2
3 3 6 0 0 3 0 0 3 0 0
3 3 0 6 0 0 3 0 0 3 0
3 3 0 0 6 0 0 3 0 0 3

 /6.

Pre-multiplying the upper 11x11 submatrix of either (35) to (38) or (42) to (43) by K′

gives identical results shown in (44).
.44615 .17671 .15136 .19665 .58628

.91010 .08541 .38312 1.16170
.32993 .01354 .01168

.76397 .09215
2.51814

 (44)

This represents the estimated mean squared error matrix of these 5 functions of β.

Next we illustrate with another set of data the relationships of (3), (4), and (5) to
(7). We have a design with 3 treatments and 2 random sires. The subclass numbers are
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Sires
Treatments 1 2

1 2 1
2 1 2
3 2 0

The model is
yijk = µ+ ti + sj + xijkβ + eijk.

where β is a regression and xijk the associated covariate.

y′ = (5 3 6 4 7 5 4 8),

Covariates = (1 2 1 3 2 4 2 3).

The data are ordered sires in treatments. We shall use a prior on treatments of 2 −1 −1
2 −1

2

 .
V ar(e) = 5I, and V ar(s) = I.

We first illustrate the equations of (8), X
′
1R
−1X1 X

′
1R
−1X2 X

′
1R
−1Z

X
′
2R
−1X1 X

′
2R
−1X2 X

′
2R
−1Z

Z′R−1X1 Z′R−1X2 Z′R−1Z

 =



1.6 3.6 .6 .6 .4 1.0 .6
9.6 .8 1.8 1.0 2.2 1.4

.6 0 0 .4 .2
.6 0 .2 .4

.4 .4 0
1.0 0

.6


. (45)

and  X
′
1R
−1y

X
′
2R
−1y

Z′R−1y

 = (8.4 19.0 2.8 3.2 2.4 4.8 3.6)′. (46)

These are ordered, µ, β, t, s. Premultiplying (45) and (46) by

1 0 0 0 0 0 0
1 0 0 0 0 0

2 −1 −1 0 0
2 −1 0 0

2 0 0
1 0

1
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we get 

1.6 3.6 .6 .6 .4 1.0 .6
3.6 9.6 .8 1.8 1.0 2.2 1.4
.2 −1.2 1.2 −.6 −.4 .2 0
.2 1.8 −.6 1.2 −.4 −.4 .6
−.4 −.6 −.6 −.6 .8 .2 −.6
1.0 2.2 .4 .2 .4 1.0 0
.6 1.4 .2 .4 0 0 .6


, (47)

and
(8.4 19.0 0 1.2 − 1.2 4.8 3.6)′. (48)

The vector (48) is the right hand side of equations like (8). Then the coefficient matrix
is matrix (47) + dg(0 0 1 1 1 1 1). The solution is

µ∗ = 5.75832,

β∗ = −.16357,

(t∗)′ = (−.49697 − .02234 .51931),

(s∗)′ = (−.30146 .30146).

Now we set up equations (3).

V = (ZGZ′ + R) =



6 1 0 1 0 0 1 1
6 0 1 0 0 1 1

6 0 1 1 0 0
6 0 0 1 1

6 1 0 0
6 0 0

6 1
6


. (49)

X2β2β
′

2X
′

2 =



2 2 2 −1 −1 −1 −1 −1
2 2 −1 −1 −1 −1 −1

2 −1 −1 −1 −1 −1
2 2 2 −1 −1

2 2 −1 −1
2 −1 −1

2 2
2


. (50)

(V + X2β2β
′

2X
′

2)
−1 =

16





.1525 −.0475 −.0275 −.0090 .0111 .0111 −.0005 −.0005
.1525 −.0275 −.0090 .0111 .0111 −.0005 −.0005

.1444 .0214 −.0067 −.0067 .0119 .0119
.1417 −.0280 −.0280 −.0031 −.0031

.1542 −.0458 .0093 .0093
.1542 .0093 .0093

.1482 −.0518
.1482


. (51)

The equations like (4) are(
.857878 1.939435

1.939435 5.328690

)(
µ∗

β∗

)
=

(
4.622698

10.296260

)
. (52)

The solution is (5.75832 - .163572) as in the mixed model equations.

(y −X1β
∗
1) = y −



1 1
1 2
1 1
1 3
1 2
1 4
1 2
1 3



(
5.75832
−.163572

)
=



−.59474
−2.43117
.40526

−1.26760
1.56883
−.10403
−1.43117

2.73240


.

β2β
′

2X
′

2(V + X2β2β
′

2X
′

2)
−1 = .1426 .1426 .1471 −.0725 −.0681 −.0681 −.0899 −.0899

−.0501 −.0501 −.0973 .1742 .1270 .1270 −.0766 −.0766
−.0925 −.0925 −.0497 −.1017 −.0589 −.0589 .1665 .1665

 .
Then t∗ = (-.49697 -.02234 .51931)′ as before.

GZ′(V + X2β2β
′

2X
′

2)
−1 =(

.0949 .0949 −.0097 .1174 .0127 .0127 .0923 .0923
−.0053 −.0053 .1309 −.0345 .1017 .1017 .0304 .0304

)
.

Then u∗ = (-.30146 .30146)′ as before.

Sections 9 and 10 of Chapter 15 give details concerning use of a diagonal matrix in
place of P.

10 Relationships Among Methods

BLUP, Bayesian estimation, and minimum mean squared error estimation are quite
similar, and in fact are identical under certain assumptions.
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10.1 Bayesian estimation

Let (X Z) = W and (β′ u′) = γ ′. Then the linear model is

y = Wγ + e.

Let e have multivariate normal distribution with null means and V ar(e) = R. Let
the prior distribution of γ be multivariate normal with E(γ) = µ, V ar(γ) = C, and
Cov(γ, e′) = 0. Then for any of the common loss functions, that is, squared loss function,
absolute loss function, or uniform loss function the Bayesian estimator of γ is the solution
to (53).

(W′R−1W + C−1) γ̂ = W′R−1y + C−1µ. (53)

Note that γ̂ is an unbiased estimator of γ if estimable and E(γ) = µ. See Lindley and
Smith (1972) for a discussion of Bayesian estimation for linear models. Equation (53)
can be derived by maximizing f(y,γ) for variations in γ. This might be called a MAP
(maximum a posteriori) estimator, Melsa and Cohn (1978).

Now suppose that

C−1→
(

0 0
0 G−1

)
and prior on µ = 0. Then (53) becomes the mixed model equations for BLUE and BLUP.

10.2 Minimum mean squared error estimation

Using the same notation as in Section 10.1, the minimum mean squared error esti-
mator is

(W′R−1W + Q−1)γo = W′R−1y, (54)

where Q = C + µµ′. Note that if µ = 0 this and the Bayesian estimator are identical.
The essential difference is that the Bayesian estimator uses prior E(β), whereas minimum
MSE uses only squares and products of β.

To convert (54) to the situation with prior on β2 but not on β1, let

Q− =

 0 0 0
0 P−1 0
0 0 G−1

 .
The upper left partition is square with order equal to the number of elements in β1.

To convert (54) to the BLUP, mixed model equations let

Q− =

(
0 0
0 G−1

)
,
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where the upper left submatix is square with order p, the number of elements in β. In
the above results P may be singular. In that case use the technique described in previous
sections for singular G and P.

10.3 Invariance property of Bayesian estimator

Under normality and with absolute deviation as the loss function, the Bayesian esti-
mator of f(β, u) is f(βo, û), where (βo, û) is the Bayesian solution (also the BLUP
solution when the priors are on u only), and f is any function. This was noted by Gianola
(1982) who made use of a result reported by DeGroot (1981). Thus under normality any
function of the BLUP solution is the Bayesian estimator of that function when the loss
function is absolute deviation.

10.4 Maximum likelihood estimation

If the prior distribution on the parameters to be estimated is the uniform distribution
and the mode of the posterior distribution is to be maximized, the resulting estimator is
ML. When Zu + e = ε has the multivariate normal distribution the MLE of β, assumed
estimable, is the maximizing value of k exp[−.5 (y−Xβ)′V−1(y−Xβ)]. The maximizing
value of this is the solution to

X′V−1Xβ̂ = X′V−1y,

the GLS equations. Now we know that the conditional mean of u given y is

GZ′V−1(y −Xβ).

Under fairly general conditions the ML estimator of a function of parameters is that
same function of the ML estimators of those same parameters. Thus ML of the conditional
mean of u under normality is

GZ′V−1(y −Xβo),

which we recognize as BLUP of u for any distribution.

11 Pattern Of Values Of P

When P has the structure described above and consequently is singular, a simpler
method can be used. A diagonal, non-singular P can be written, which when used in
mixed model equations results in the same estimates and predictions of estimable and
predictable functions. See Chapter 15.
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Chapter 10
Quadratic Estimation of Variances

C. R. Henderson

1984 - Guelph

Estimation of G and R is a crucial part of estimation and tests of significance of
estimable functions of β and of prediction of u. Estimators and predictors with known
desirable properties exist when G and R are known, but realistically that is never the case.
Consequently we need to have good estimates of them if we are to obtain estimators and
predictors that approach BLUE and BLUP. This chapter is concerned with a particular
class of estimators namely translation invariant, unbiased, quadratic estimators. First a
model will be described that appears to include all linear models proposed for animal
breeding problems.

1 A General Model For Variances And Covariances

The model with which we have been concerned is

y = Xβ + Zu + e.

V ar(u) = G, V ar(e) = R, Cov(u, e′) = 0.

The dimensions of vectors and matrices are

y : n× 1, X : n× p, β : p× 1, Z : n× q, u : q × 1, e : n× 1, G : q × q, and R : n× n.

Now we characterize u and e in more detail. Let

Zu =
∑b

i=1
Ziui. (1)

Zi has dimension n× qi, and ui is qi × 1.∑b

i=1
qi = q,

V ar(ui) = Giigii. (2)

Cov(ui,u
′

j) = Gijgij. (3)

gii represents a variance and gij a covariance. Let

e′ = (e
′

1 e
′

2 . . . e
′

c).

V ar(ei) = Riirii. (4)

Cov(ei, e
′

j) = Rijrij. (5)
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rii and rij represent variances and covariances respectively. With this model V ar(y) is

V =
∑b

i=1

∑b

j=1
ZiGijZ

′

jgij + R, (6)

V ar(u) = G =


G11g11 G12g12 · · · G1bg1b

G
′
12g12 G22g22 · · · G2bg2b

...
...

...
G

′
1bg1b G

′
2bg22 · · · Gbbgbb

 , (7)

and

V ar(e) = R =


R11r11 R12r12 · · · R1cr1c
R

′
12r12 R22r22 · · · R2cr2c

...
...

...
R

′
1cr1c R

′
2cr2c · · · Rccrcc

 . (8)

We illustrate this general model with two different specific models, first a traditional
mixed model for variance components estimation, and second a two trait model with
missing data. Suppose we have a random sire by fixed treatment model with interaction.
The numbers of observations per subclass are

Sires
Treatment 1 2 3

1 2 1 2
2 1 3 0

Let the scalar model be
yijk = µ+ ti + sj + (ts)ij + eijk.

The sj have common variance, σ2
s , and are uncorrelated. The (ts)ij have common variance,

σ2
st, and are uncorrelated. The sj and (ts)ij are uncorrelated. The eijk have common

variance, σ2
e , and are uncorrelated. The corresponding vector model, for b = 2, is

y = Xβ + Z1u1 + Z2u2 + e.

Xβ =



1 1 0
1 1 0
1 1 0
1 1 0
1 1 0
1 0 1
1 0 1
1 0 1
1 0 1



 µ
t1
t2

 , Z1u1 =



1 0 0
1 0 0
0 1 0
0 0 1
0 0 1
1 0 0
0 1 0
0 1 0
0 1 0



 s1

s2

s3

 ,

2



Z2u2 =



1 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1




ts11

ts12

ts13

ts21

ts22

 ,

and
G11g11 = I3 σ

2
s , G22g22 = I5 σ

2
ts.

G12g12 does not exist, c = 1, and R11r11 = I9 σ
2
e .

For a two trait model suppose that we have the following data on progeny of two
related sires

Trait
Sire Progeny 1 2

1 1 X X
1 2 X X
1 3 X 0
2 4 X X
2 5 X 0

X represents a record and 0 represents a missing record. Let us assume an additive
genetic sire model. Order the records by columns, that is animals within traits. Let
u1,u2 represent sire values for traits l and 2 respectively. These are breeding values
divided by 2. Let e1, e2 represent ”errors” for traits 1 and 2 respectively. Sire 2 is a son
of sire 1, both non-inbred.

n = 8, q1 = 2, q2 = 2.

Z1u1 =



1 0
1 0
1 0
0 1
0 1
0 0
0 0
0 0


u1, Z2u2 =



0 0
0 0
0 0
0 0
0 0
1 0
1 0
0 1


u2,

G11g11 =

(
1 1/2

1/2 1

)
g∗11, G12g12 =

(
1 1/2

1/2 1

)
g∗12,
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G22g22 =

(
1 1/2

1/2 1

)
g∗22,

where (
g∗11 g∗12

g∗12 g∗22

)
is the additive genetic variance-covariance matrix divided by 4. Also,

R11r11 = I5r
∗
11, R22r22 = I3r

∗
22, R12r12 =


1 0 0
0 1 0
0 0 0
0 0 1
0 0 0

 r∗12,

where (
r∗11 r∗12

r∗12 r∗22

)
is the error variance-covariance matrix for the 2 traits. Then h2

1 = 4 g∗11/(g
∗
11 + r∗11).

Genetic correlation between traits 1 and 2 is g∗12/(g
∗
11 g∗22)

1/2.

Another method for writing G and R is the following

G = G∗11g11 + G∗12g12 + ...+ G∗bbgbb, (9)

where

G∗11 =

(
G11 0
0 0

)
, G∗12 =

 0 G12 0
G

′
12 0 0

0 0 0

 , ..., G∗bb =

(
0 0
0 Gbb

)
.

Every G∗ij has order, q, and

R = R∗11r11 + R∗12r12 + ...+ R∗ccrcc, (10)

where

R∗11 =

(
R11 0
0 0

)
, R∗12 =

 0 R12 0
R

′
12 0 0

0 0 0

 , etc.

and every R∗ij has order, n.

2 Quadratic Estimators

Many methods commonly used for estimation of variances and covariances are quadratic,
unbiased, and translation invariant. They include among others, ANOVA estimators for

4



balanced designs, unweighted means and weighted squares of means estimators for filled
subclass designs, Henderson’s methods 1, 2 and 3 for unequal numbers, MIVQUE, and
MINQUE. Searle (1968, 1971a) describes in detail some of these methods.

A quadratic estimator is defined as y′Qy where for convenience Q can be specified
as a symmetric matrix. If we derive a quadratic with a non-symmetric matrix, say P, we
can convert this to a quadratic with a symmetric matrix by the following identity.

y′Qy = (y′Py + y′P′y)/2

where Q = (P + P′)/2.

A translation invariant quadratic estimator satisfies

y′Qy = (y + Xk)′Q(y + Xk) for any vector, k.

y′Qy = y′Qy + 2y′QXk + k′X′QXk.

From this it is apparent that for equality it is required that

QX = 0. (11)

For unbiasedness we examine the expectation of y′Qy intended to estimate, say ggh.

E(y′Qy) = β′X′QXβ +
b∑
i=1

b∑
j=1

tr(QZiG
∗
ijZ

′

j)gij

+
c∑
i=1

c∑
j=i

tr(QR∗ij)rij.

We require that the expectation equals ggh. Now if the estimator is translation invariant,
the first term in the expectation is 0 because QX = 0. Further requirements are that

tr(QZG∗ijZ
′) = 1 if i = g and j = h

= 0, otherwise and

tr(QR∗ij) = 0 for all i, j.

3 Variances Of Estimators

Searle(1958) showed that the variance of a quadratic estimator y′Qy, that is unbiased
and translation invariant is

2 tr(QVQV), (12)

and the covariance between two estimators y′Q1y and y′Q2y is

2 tr(Q1VQ2V) (13)

5



where y is multivariate normal, and V is defined in (6). Then it is seen that (12) and
(13) are quadratics in the gij and rij, the unknown parameters that are estimated. Conse-
quently the results are in terms of these parameters, or they can be evaluated numerically
for assumed values of g and r. In the latter case it is well to evaluate V numerically for
assumed g and r and then to proceed with the methods of (12) and (13).

4 Solutions Not In The Parameter Space

Unbiased estimators of variances and covariances with only one exception have posi-
tive probabilities of solutions not in the parameter space. The one exception is estimation
of error variance from least squares or mixed model residuals. Otherwise estimates of
variances can be negative, and functions of estimates of covariances and variances can
result in estimated correlations outside the permitted range -1 to 1. In Chapter 12 the
condition required for an estimated variance-covariance matrix to be in the parameter
space is that there be no negative eigenvalues.

An inevitable price to pay for quadratic unbiasedness is non-zero probability that
the estimated variance-covariance matrix will not fall in the parameter space. All such
estimates are obtained by solving a set of linear equations obtained by equating a set
of quadratics to their expectations. We could, if we knew how, impose side conditions
on these equations that would force the solution into the parameter space. Having done
this the solution would no longer yield unbiased estimators. What should be done in
practice? It is sometimes suggested that we estimate unbiasedly, report all such results
and then ultimately we can combine these into a better set of estimates that do fall in the
parameter space. On the other hand, if the purpose of estimation is to provide G̃ and R̃
for immediate use in mixed model estimation and prediction, it would be very foolish to
use estimates not in the parameter space. For example, suppose that in a sire evaluation
situation we estimate σ2

e/σ
2
s to be negative and use this in mixed model equations. This

would result in predicting a sire with a small number of progeny to be more different from
zero than the adjusted progeny mean if −σ̂2

e/σ̂
2
s is less than the corresponding diagonal

element of the sire. If the absolute value of this ratio is greater than the diagonal element,
the sign of ŝi is reversed as compared to the adjusted progeny mean. These consequences
are of course contrary to selection index and BLUP principles.

Another problem in estimation should be recognized. The fact that estimated variance-
covariance matrices fall in the parameter space does not necessarily imply that functions
of these have that same property. For example, in an additive genetic sire model it is
often assumed that 4σ̂2

s/(σ̂
2
s + σ̂2

e) is an estimate of h2. But it is entirely possible that this
computed function is greater than one even when σ̂2

s and σ̂2
e are both greater than 0. Of

course if σ̂2
s < 0 and σ̂2

e > 0, the estimate of h2 would be negative. Side conditions to
solution of σ̂2

s and σ̂2
e that will insure that σ̂2

s , σ̂
2
e , and h2 (computed as above) fall in the

6



parameter space are
σ̂2
s > 0, σ̂2

e > 0, and σ̂2
s/σ̂

2
e < 1/3.

Another point that should be made is that even though σ̂2
s and σ̂2

e are unbiased, σ̂2
s/σ̂

2
e is

a biased estimator of σ2
s/σ

2
e , and 4σ̂2

s/(σ̂
2
s + σ̂2

e) is a biased estimator of h2.

5 Form Of Quadratics

Except for MIVQUE and MINQUE most quadratic estimators in models with all
gij = 0 for i 6= j and with R = Iσ2

e can be expressed as linear functions of y′y and of
reductions in sums of squares that will now be defined.

Let OLS equations in β,u be written as

W′Wαo = W′y (14)

where W = (X Z) and

αo =

(
βo

uo

)
.

Then reduction under the full model is

(αo)′W′y (15)

Partition with possible re-ordering of columns

W = (W1 W2) (16)

and correspondingly

αo =

(
α1

α2

)
.

α1 should always contain β and from 0 to b− 1 of the ui. Solve for α∗1 in

W
′

1W1α
∗
1 = W

′

1y. (17)

Then reduction under the reduced model is

(α∗1)
′W

′

1y. (18)

6 Expectations of Quadratics

Let us derive the expectations of these ANOVA type quadratics.

E(y′y) = tr V ar(y) + β′X′Xβ (19)

=
b∑
i=1

tr(ZiGiiZ
′

i)gii + nσ2
e + β′X′Xβ. (20)
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In traditional variance components models every Gii = I. Then

E(y′y) =
b∑
i=1

n gii + n σ2
e + β′X′Xβ. (21)

It can be seen that (15) and (18) are both quadratics in W′y. Consequently we use
V ar(W′y) in deriving expectations. The random part of W′y is∑

i

W′Ziui + W′e. (22)

The matrix of the quadratic in W′y for the reduction under the full model is (W′W)−.
Therefore the expectation is

b∑
i=1

tr(W′W)−W′ZiGiiZ
′

lWgii + rank (W)σ2
e + β′X′W(W′W)−W′Xβ. (23)

When all Gii = I, (23) reduces to

b∑
i=1

n gii + r(W)σ2
e + β′X′Xβ. (24)

For the reduction due to α1, the matrix of the quadratic in W′y is(
(W

′
1W1)

− 0
0 0

)
.

Then the expectation of the reduction is

h∑
i=1

tr(W
′

1W1)
−W

′

1ZiGiiZ
′

iW1gii + rank (W1)σ
2
e + β′X′W1(W

′
1W1)

−W′
1Xβ. (25)

When all Gii = I, (25) and when X is included in W1 simplifies to∑
i

n gii +
∑
j

tr(W
′

1W1)
−W

′

1ZjZ
′

jW1gjj + rank (W1)σ
2
e + β′X′Xβ. (26)

where i refers to ui included in α1, and j refers to uj not included in α1. If Zj is a linear
function of W1, the coefficient of gjj is n also.

7 Quadratics in û and ê

MIVQUE computations can be formulated as we shall see in Chapter 11 as quadratics
in û and ê, BLUP of u and e when g = g̃ and r = r̃. The mixed model equations are(

X′R̃−1X X′R̃−1Z

Z′R̃−1X Z′R̃−1Z + G̃−1

)(
βo

û

)
=

(
X′R̃−1y

Z′R̃−1y

)
. (27)
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Let some quadratic in û be û′Qû. The expectation of this is

trQ V ar(û). (28)

To find V ar(û), define a g-inverse of the coefficient matrix of (27) as(
C00 C01

C10 C11.

)
≡
(

C0

C1

)
≡ C. (29)

û = C1W
′R̃−1y. See (16) for definition of W. Then

V ar(û) = C1 [V ar(W′R̃−1y)] C
′

1, (30)

and

V ar(W′R̃−1y) =
∑b

i=1

∑b

j=1
W′R̃−1ZiGijZ

′

jR̃
−1Wgij (31)

+
∑c

i=1

∑c

j=1
W′R̃−1R∗ijR̃

−1Wrij. (32)

Let some quadratic in ê be ê′Qê. The expectation of this is

trQ V ar(ê). (33)

But ê = y −Xβo − Zû = y −Wαo, where (αo)′ = [(βo)′ û′] and W = (X Z), giving

ê = [I−WCW′R̃−1]y. (34)

Therefore,
V ar(ê) = (I−WCW′R̃−1) [V ar(y)] (I−WCW′R̃−1)′, (35)

and

V ar(y) =
∑b

i=1

∑b

j=1
ZiGijZ

′

jgij (36)

+
∑c

i=1

∑c

j=1
R∗ijrij. (37)

When

G = G̃,

R = R̃,

V ar(û) = G−C11, and (38)

V ar(ê) = R−WCW′. (39)

(38) and (39) are used for REML and ML methods to be described in Chapter 12.
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8 Henderson’s Method 1

We shall now present several methods that have been used extensively for estimation
of variances (and in some cases with modifications for covariances). These are modelled
after balanced ANOVA methods of estimation. The model for these methods is usually

y = Xβ +
∑b

i=1
Ziui + e, (40)

where V ar(ui) = Iσ2
i , Cov(ui,u

′
j) = 0 for all i 6= j, and V ar(e) = Iσ2

e . However, it is
relatively easy to modify these methods to deal with

V ar(ui) = Giiσ
2
i .

For example, Gii might be A, the numerator relationship matrix.

Method 1, Henderson(1953), requires for unbiased estimation that X′ = [1...1]. The
model is usually called a random model. The following reductions in sums of squares are
computed

y′Zi(ZiZi)
−1Z

′

iy(i = 1, . . . , b), (41)

(1′yy′1)/n, (42)

and

y′y. (43)

The first b of these are simply uncorrected sums of squares for the various factors
and interactions. The next one is the ”correction factor”, and the last is the uncorrected
sum of squares of the individual observations.

Then these b+2 quadratics are equated to their expectations. The quadratics of (41)
are easy to compute and their expectations are simple because Z

′
iZi is always diagonal.

Advantage should therefore be taken of this fact. Also one should utilize the fact that the
coefficient of σ2

i is n, as is the coefficient of any σ2
j for which Zj is linearly dependent upon

Zi. That is Zj = ZiK. For example the reduction due to sires × herds has coefficient
n for σ2

sh, σ
2
s , σ

2
h in a model with random sires and herds. The coefficient of σ2

e in the
expectation is the rank of Z

′
iZi, which is the number of elements in ui.

Because Method 1 is so easy, it is often tempting to use it on a model in which
X′ 6= (1...1), but to pretend that one or more fixed factors is random. This leads to
biased estimators, but the bias can be evaluated in terms of unknown ββ′. In balanced
designs no bias results from using this method.

We illustrate Method 1 with a treatment × sire design in which treatments are
regarded as random. The data are arranged as follows.
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Number of Observations
Sires

Treatment 1 2 3 4 Sums
1 8 3 2 5 18
2 7 4 1 0 12
3 6 2 0 1 9

Sums 21 9 3 6 39

Sums of Observations
Sires

Treatment 1 2 3 4 Sums
1 54 21 13 25 113
2 55 33 8 0 96
3 44 17 0 9 70

Sums 153 71 21 34 279

y′y = 2049.

The ordinary least squares equations for these data are useful for envisioning Method
1 as well as some others. The coefficient matrix is in (44). The right hand side vector is
(279, 113, 96, 70, 153, 71, 21, 34, 54, 21, 13, 25, 55, 33, 8, 44, 17, 9)′.

39 18 12 9 21 9 3 6 8 3 2 5 7 4 1 6 2 1
18 0 0 8 3 2 5 8 3 2 5 0 0 0 0 0 0

12 0 7 4 1 0 0 0 0 0 7 4 1 0 0 0
9 6 2 0 1 0 0 0 0 0 0 0 6 2 1

21 0 0 0 8 0 0 0 7 0 0 6 0 0
9 0 0 0 3 0 0 0 4 0 0 2 0

3 0 0 0 2 0 0 0 1 0 0 0
6 0 0 0 5 0 0 0 0 0 1

8 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0
5 0 0 0 0 0 0

7 0 0 0 0 0
4 0 0 0 0

1 0 0 0
6 0 0

2 0
1



(44)

Red (ts) =
542

8
+

212

3
. . .+

92

1
= 2037.56.

Red (t) =
1132

18
+

962

12
+

702

9
= 2021.83.

Red (s) =
1532

21
+ ...+

342

6
= 2014.49.

C.F. = 2792/39 = 1995.92.

E[Red (ts)] = 10σ2
s + 39(σ2

s + σ2
t + σ2

ts) + 39 µ2.
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For the expectations of other reductions as well as for the expectations of quadrat-
ics used in other methods including MIVQUE we need certain elements of W′Z1Z

′
1W,

W′Z2Z
′
2W, and W′Z3Z

′
3W, where Z1, Z2, Z3 refer to incidence matrices for t, s, and ts,

respectively, and W = [1 Z]. The coefficients of W′Z1Z
′
1W are in (45), (46), and (47).

Upper left 9× 9

549 324 144 81 282 120 48 99 144
324 0 0 144 54 36 90 144

144 0 84 48 12 0 0
81 54 18 0 9 0

149 64 23 46 64
29 10 17 24

5 10 16
26 40

64


(45)

Upper right 9× 9 and (lower left 9× 9)’

54 36 90 84 48 12 54 18 9
54 36 90 0 0 0 0 0 0
0 0 0 84 48 12 0 0 0
0 0 0 0 0 0 54 18 9

24 16 40 49 28 7 36 12 6
9 6 15 28 16 4 12 4 2
6 4 10 7 4 1 0 0 0

15 10 25 0 0 0 6 2 1
24 16 40 0 0 0 0 0 0


(46)

Lower right 9× 9 

9 6 15 0 0 0 0 0 0
4 10 0 0 0 0 0 0

25 0 0 0 0 0 0
49 28 7 0 0 0

16 4 0 0 0
1 0 0 0

36 12 6
4 2

1


(47)

The coefficients of W′Z3Z
′
3W are in (48), (49), and (50).
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Upper left 9× 9

209 102 66 41 149 29 5 26 64
102 0 0 64 9 4 25 64

66 0 49 16 1 0 0
41 36 4 0 1 0

149 0 0 0 64
29 0 0 0

5 0 0
26 0

64


(48)

Upper right 9× 9 and (lower left 9× 9)’

9 4 25 49 16 1 36 4 1
9 4 25 0 0 0 0 0 0
0 0 0 49 16 1 0 0 0
0 0 0 0 0 0 36 4 1
0 0 0 49 0 0 36 0 0
9 0 0 0 16 0 0 4 0
0 4 0 0 0 1 0 0 0
0 0 25 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0


(49)

Lower right 9× 9
dg (9, 4, 25, 49, 16, 1, 36, 4, 1) (50)

The coefficients of W′Z2Z
′
2W are in (51), (52), and (53).

Upper left 9× 9

567 231 186 150 441 81 9 36 168
102 70 59 168 27 6 30 64

66 50 147 36 3 0 56
41 126 18 0 6 48

441 0 0 0 168
81 0 0 0

9 0 0
36 0

64


(51)
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Upper right 9× 9 and (lower left 9× 9)’

27 6 30 147 36 3 126 18 6
9 4 25 56 12 2 48 6 5

12 2 0 49 16 1 42 8 0
6 0 5 42 8 0 36 4 1
0 0 0 147 0 0 126 0 0

27 0 0 0 36 0 0 18 0
0 6 0 0 0 3 0 0 0
0 0 30 0 0 0 0 0 6
0 0 0 56 0 0 48 0 0


(52)

Lower right 9× 9 

9 0 0 0 12 0 0 6 0
4 0 0 0 2 0 0 0

25 0 0 0 0 0 5
49 0 0 42 0 0

16 0 0 8 0
1 0 0 0

36 0 0
4 0

1


(53)

E[Red (t)] = 3σ2
e + 39σ2

t + k1(σ
2
s + σ2

ts) + 39 µ2.

k1 =
102

18
+

66

12
+

41

9
= 15.7222.

The numerators above are the 2nd, 3rd, and 4th diagonals of (48) and (51). The denomi-
nators are the corresponding diagonals of the least squares coefficient matrix of (44). Also
note that

102 =
∑
j

n2
1j = 82 + 32 + 22 + 52,

66 = 72 + 42 + 12,

41 = 62 + 22 + 12.

E[Red (s)] = 4σ2
e + 39σ2

s + k2(σ
2
t + σ2

ts) + 39 µ2.

k2 =
149

21
+

29

9
+

5

3
+

26

6
= 16.3175.

E( C.F.) = σ2
e + k3σ

2
ts + k4σ

2
t + k5σ

2
s + 39 µ2.

k3 =
209

39
= 5.3590, k4 =

549

39
= 14.0769, k5 =

567

39
= 14.5385.
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It turns out that

σ̂2
e = [y′y − Red (ts)]/(39− 10)

= (2049− 2037.56)/29 = .3945.

E


σ̂2
e

R(ts)
R(s)
R(t)
CF

 =


1 0 0 0 0

10 39 39 39 1
4 16.3175 39 16.3175 1
3 15.7222 15.7222 39 1
1 5.3590 14.5385 14.0769 1




σ2
e

σ2
ts

σ2
s

σ2
t

39µ2

 .


σ̂2
e

σ̂2
ts

σ̂2
s

σ̂2
t

39µ̂2

 =


1. 0 0 0 0

−.31433 .07302 −.06979 −.06675 .06352
.01361 −.03006 .06979 .02379 −.06352
.04981 −.02894 .02571 .06675 −.06352
−.21453 .45306 −1.00251 −.92775 2.47720




.3945

2037.56
2014.49
2021.83
1995.92


= [.3945, -.1088, .6660, 1.0216, 1972.05]’.

The 5× 5 matrix just above is the inverse of the expectation matrix.

What if t is fixed but we estimate by Method 1 nevertheless? We can evaluate the
bias in σ̂2

ts and σ̂2
s by noting that

σ̂2
ts = y′WQ1W

′y − .31433 σ̂2
e

where Q1 is a matrix formed from these elements of the inverse just above, (.07302, -
.06979, -.06675, 06352) and the matrices of quadratics in right hand sides representing
Red (ts), Red (s), Red (t), C.F.

Q1 is dg [.0016, -.0037, -.0056, -.0074, -.0033, -0.0078, -.0233, -.0116, .0091, .0243,
.0365, .0146, .0104, .0183, .0730, .0122, .0365, .0730]. dg refers to the diagonal elements
of a matrix. Then the contribution of tt′ to the expectation of σ̂2

ts is

tr(Z
′

1WQ1W
′Z1) (tt′)

where Z1 is the incidence matrix for t and W = (1 Z).
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This turns out to be

tr

 −.0257 .0261 −.0004
−.0004 −.0257

.0261

 tt′,

that is, −.0257 t21 + 2(.0261) t1 t2 − 2(.0004) t1t3 − .0004 t22 − 2(.0257) t2t3 + .0261 t22.
This is the bias due to regarding t as random. Similarly the quadratic in right hand sides
for estimation of σ2

s is

dg [-.0016, .0013, .0020, .0026, .0033, .0078, .0233, .0116, -.0038, -.0100, -.0150, -.0060,
-.0043, -.0075, -.0301, -.0050, -.0150, -.0301].

The bias in σ̂2
s is

tr

 .0257 −.0261 .0004
.0004 .0257

−.0261

 tt′.

This is the negative of the bias in σ̂2
ts .

9 Henderson’s Method 3

Method 3 of Henderson(1953) can be applied to any general mixed model for variance
components. Usually the model assumed is

y = Xβ +
∑

Ziui + e. (54)

V ar(ui) = Iσ2
i , Cov(uiu

′
j) = 0, V ar(e) = Iσ2

i . In this method b + 1 different quadratics
of the following form are computed.

Red (β with from 0 to b included ui) (55)

Then σ2
e is estimated usually by

σ̂2
e = [y′y − Red (β,u1, ...,ub)]/[n− rank(W)] (56)

where W = (X Z), and the solution to βo, uo is OLS.

In some cases it is easier to compute σ2
e by expanding the model to include all possible

interactions. Then if there is no covariate, σ̂2
e is the within ”smallest subclass” mean

square. Then σ̂2
e and the b + 1 reductions are equated to their expectations. Method 3

has the unfortunate property that there are often more than b + 1 reductions like (55)
possible. Consequently more than one Method 3 estimator exists, and in unbalanced
designs the estimates will not be invariant to the choice. One would like to select the
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set that will give smallest sampling variance, but this is unknown. Consequently it is
tempting to select the easiest subset. This usually is

Red (β,u1), Red (β,u2), ..., Red (β,ub), Red (β). For example: Red (β,u2) is com-
puted as follows. Solve (

X′X X′Z2

Z
′
2X Z

′
2Z2

)(
βo

uo2

)
=

(
X′y
Z2
′y

)
.

Then reduction = (βo)′X′y + (uo2)
′Z

′
2y. To find the expectation of a reduction let a

g-inverse of the coefficient matrix of the ith reduction, (W′
iWi), be Ci. Then

E(ith reduction) = rank (Ci)σ
2
e +

∑s

j=1
trCiW

′

iZjZ
′

jWiσ
2
j + β′X′Xβ. (57)

Wi = [X Zi for any included ui], and Ci is the g-inverse. For example, in Red (β, u1, u3),
W = [X Z1 Z3].

Certain of the coefficients in (57) are n. These are all σ2
j included in the reduction

and also any σ2
k for which

Zk = WjL.

A serious computational problem with Method 3 is that it may be impossible with
existing computers to find a g-inverse of some of the W

′
iWi. Partitioned matrix methods

can sometimes be used to advantage. Partition

W
′

iWi =

(
W

′
1W1 W

′
1W2

W
′
2W1 W

′
2W2

)
,

and

W
′

iy =

(
W

′
1y

W
′
2y

)
.

It is advantageous to have W
′
1W1 be diagonal or at least of some form that is easy to

invert. Define β and included ui as α and partition as

(
α1

α2

)
. Then the equations to

solve are (
W

′
1W1 W

′
1W2

W
′
2W1 W

′
2W2

)(
α1

α2

)
=

(
W

′
1y

W
′
2y

)
.

Absorb α1 by writing equations

W
′

2PW2α2 = W
′

2Py (58)

where P = I−W1(W
′
1W1)

−W
′
1. Solve for α2 in (58). Then

reduction = y′W1(W
′

1W1)
−W

′

1y + α
′

2W
′

2Py. (59)
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To find the coefficient of σ2
j in the expectation of this reduction, define

(W
′

2PW2)
− = C.

The coefficient of σ2
j is

tr(W
′

1W1)
−W

′

1ZjZ
′

jW1 + trCW
′

2PZjZ
′

jPW2. (60)

Of course if uj is included in the reduction, the coefficient is n.

Let us illustrate Method 3 by the same example used in Method 1 except now we
regard t as fixed. Consequently the σ2

i are σ2
ts, σ

2
s , and we need 3 reductions, each

including µ, t. The only possible reductions are Red (µ,t,ts), Red (µ,t,s), and Red (µ,t).
Consequently in this special case Method 3 is unique. To find the first of these reductions
we can simply take the last 10 rows and columns of the least squares equations. That is,
dg [8, 3, 2, 5, 7, 4, 1, 6, 2, 1] st̂ = [54, 21, 13, 25, 55, 33, 8, 44, 17, 9]′. The resulting
reduction is 2037.56 with expectation,

10σ2
e + 39(σ2

ts + σ2
s) + β′X′Xβ.

For the reduction due to (µ, t, s) we can take the subset of OLS equations represented
by rows (and columns) 2-7 inclusive. This gives equations to solve as follows.

18 0 0 8 3 2
12 0 7 4 1

9 6 2 0
21 0 0

9 0
3





t1
t2
t3
s1

s2

s3


=



113
96
70

153
71
21


(61)

We can delete µ and s4 because the above is a full rank subset of the coefficient matrix
that includes µ and s4. The inverse of the above matrix is

.1717 .1602 .1417 −.1593 −.1599 −.1678
.3074 .1989 −.2203 −.2342 −.2093

.2913 −.2035 −.2004 −.1608
.2399 .1963 .1796

.3131 .1847
.5150


, (62)

and this gives a solution vector [5.448, 6.802, 6.760, 1.011, 1.547, 1.100]. The reduction
is 2029.57. The coefficient of σ2

s in the expectation is 39 since s is included. To find the
coefficient of σ2

ts define as T the submatrix of (51) formed by taking columns and rows
(2-7). Then the coefficient of σ2

ts = trace [matrix (62)] T = 26.7638. The coefficient of σ2
e

is 6. The reduction due to t and its expectation has already been done for Method 1.
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Another way of formulating a reduction and corresponding expectations is to compute
ith reduction as follows. Solve 0 0 0

0 W
′
iWi 0

0 0 0


 γo1

γo2
γo3

 =

 r1

r2

r3

 = r. (63)

r = W′y,where W = (X Z)

Red = r′Qir,

where Qi is some g-inverse of the coefficient matrix, (63). Then the coefficient of σ2
e in

the expectation is
rank (Qi) = rank (W

′

iWi). (64)

Coefficient of σ2
j is

tr QiW
′ZjZ

′

jW. (65)

Let the entire vector of expectations be

E


σ̂2
e

Red (1)
...
Red (b+ 1)

 = P



σ2
e

σ2
1

...
σ2
b

β′X′Xβ

 .

Then the unbiased estimators are

σ̂2
e

σ̂2
1

...
σ̂2
b̂β′X′Xβ

 = P−1


σ̂2
e

Red (1)
...
Red (b + 1)

 (66)

provided P−1 exists. If it does not, Method 3 estimators, at least with the chosen b + 1
reductions, do not exist. In our example

E


σ̂2
e

Red (ts)
Red (ts)
Red (t)

 =


1 0 0 0

10 39 39 1
6 26.7638 39 1
3 15.7222 15.7222 1



σ2
e

σ2
ts

σ2
s

β′X′Xβ

 .

σ̂2
e

σ̂2
ts

σ̂2
ŝβ′X′Xβ

 =


.3945
.5240
.0331
2011.89

 ,

=


1. 0 0 0

−.32690 .08172 −.08172 0
.02618 −.03877 .08172 −.04296

1.72791 −.67542 0 1.67542



.3945
2037.56
2029.57
2021.83

 .
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These are different from the Method 1 estimates.

10 A Simple Method for General Xβ

We now present a very simple method for the general Xβ model provided an easy
g-inverse of X′X can be obtained. Write the following equations.

Z
′
1PZ1 Z

′
1PZ2 · · · Z

′
1PZb

Z
′
2PZ1 Z

′
2PZ2 · · · Z

′
2PZb

...
Z

′
bPZ1 Z

′
bPZ2 · · · Z

′
bPZb




u1

u2
...
ub

 =


Z

′
1Py

Z
′
2Py

...
Z

′
bPy

 (67)

P = I − X(X′X)−X′. βo is absorbed from the least squares equations to obtain (67).
We could then compute b reductions from (67) and this would be Method 3. An easier
method, however, is described next.

Let Di be a diagonal matrix formed from the diagonals of Z
′
iPZi. Then compute the

following b quadratics,
y′PZiD

−1
i Z

′

iPy. (68)

This computation is simple because D−1
i is diagonal. It is simply the sum of squares of

elements of Z
′
iPy divided by the corresponding element of Di. The expectation is also

easy. It is
qiσ

2
e +

∑s

j=1
tr D−1

i Z
′

iPZjZ
′

jPZiσ
2
j . (69)

Because D−1
i is diagonal we need to compute only the diagonals of Z

′
iPZjZ

′
jPZi to find

the last term of (69). Then as in Methods 1 and 3 we find some estimate of σ2
e and equate

σ̂2
e and the s quadratics of (68) to their expectations.

Let us illustrate the method with our same example, regarding t as fixed.

X′X =


39 18 12 9

18 0 0
12 0

9

 ,
and a g-inverse is 

0 0 0 0
18−1 0 0

12−1 0
9−1

 .

The coefficient matrix of equations like (67) is in (70), (71) and (72) and the right
hand side is (.1111, 4.6111, .4444, -5.1667, 3.7778, 2.1667, .4444, -6.3889, -1, 1, 0, -2.6667,
1.4444, 1.2222)′.
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Upper left 7× 7

9.3611 −5.0000 −1.4722 −2.8889 4.4444 −1.3333 −.8889
6.7222 −.6667 −1.0556 −1.3333 2.5 −.3333

2.6944 −.5556 −.8889 −.3333 1.7778
4.5 −2.2222 −.8333 −.5556

4.4444 −1.3333 −.8889
2.5 −.3333

1.7778


(70)

Upper right 7× 7 and (lower left 7× 7)’

−2.2222 2.9167 −2.3333 −.5833 2.0 −1.3333 −.6667
−.8333 −2.3333 2.6667 −.3333 −1.3333 1.5556 −.2222
−.5556 −.5833 −.3333 .9167 0 0 0
3.6111 0 0 0 −.6667 −.2222 .8889
−2.2222 0 0 0 0 0 0
−.8333 0 0 0 0 0 0
−.5556 0 0 0 0 0 0


(71)

Lower right 7× 7

3.6111 0 0 0 0 0 0
2.9167 −2.3333 −.5833 0 0 0

2.6667 −.3333 0 0 0
.9167 0 0 0

2.0 −1.3333 −.6667
1.5556 −.2222

.8889


(72)

The diagonals of the variance of the reduced right hand sides are needed in this
method and other elements are needed for approximate MIVQUE in Chapter 11. The
coefficients of σ2

e in this variance are in (70), . . . , (72). The coefficients of σ2
ts are in (73),

(74) and (75). These are computed by (Cols. 5-14 of 10.70) (same)′.

Upper left 7× 7

47.77 −24.54 −5.31 −17.93 27.26 −7.11 −3.85
25.75 .39 −1.60 −7.11 8.83 .22

5.66 −.74 −3.85 .22 4.37
20.27 −16.30 −1.94 −.74

27.26 −7.11 −3.85
8.83 .22

4.37


(73)
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Upper right 7× 7 and (lower left 7× 7)’

−16.30 14.29 −12.83 −1.46 6.22 −4.59 −1.63
−1.94 −12.83 12.67 .17 −4.59 4.25 .35
−.74 −1.46 .17 1.29 0 0 0
18.98 0 0 0 −1.63 .35 1.28
−16.30 0 0 0 0 0 0
−1.94 0 0 0 0 0 0
−.74 0 0 0 0 0 0


(74)

Lower right 7× 7

18.98 0 0 0 0 0 0
14.29 −12.83 −1.46 0 0 0

12.67 .17 0 0 0
1.29 0 0 0

6.22 −4.59 −1.63
4.25 .35

1.28


(75)

The coefficients of σ2
s are in (76), (77), and (78). These are computed by (Cols 1-4

of 10.70) (same)′.

Upper left 7× 7

123.14 −76.39 −12.81 −33.95 56.00 −22.08 −7.67
71.75 1.67 2.97 −28.25 24.57 1.60

10.18 .96 −6.81 −.14 6.63
30.02 −20.94 −2.35 −.57

27.26 −7.11 −3.85
8.83 .22

4.37


(76)

Upper right 7× 7 and (lower left 7× 7)’

−26.25 39.83 −34.69 −5.14 27.31 −19.62 −7.70
2.07 −29.88 29.81 .06 −18.26 17.36 .90
.32 −4.31 .76 3.55 −1.69 1.05 .64

23.86 −5.64 4.11 1.53 −7.37 1.21 6.16
−16.30 16.59 −13.63 −2.96 12.15 −7.51 −4.64
−1.94 −9.53 9.89 −.36 −5.44 5.85 −.41
−.74 −2.85 .59 2.26 −.96 .79 .17


(77)
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Lower right 7× 7

18.98 −4.21 3.15 1.06 −5.74 .86 4.88
14.29 −12.83 −1.46 8.94 −7.52 −1.43

12.67 .17 −8.22 7.26 .96
1.29 −.72 .26 .46

6.22 −4.59 −1.63
4.25 .35

1.28


(78)

The reduction for ts is

3.7782

4.444
+ · · ·+ 1.2222

.889
= 23.799.

The expectation is 10 σ2
e + 35.7262 (σ2

ts + σ2
s), where 10 is the number of elements in the

ts vector and

35.7262 =
27.259

4.444
+ · · · +

1.284

.889
.

The reduction for s is

.1112

9.361
+ · · · +

(−5.167)2

4.5
= 9.170.

The expectation is 4 σ2
e + 15.5383 σ2

ts + 34.2770 σ2
s , where

15.5383 =
47.773

9.361
+ · · · +

20.265

4.5
.

34.2770 =
123.144

9.361
+ · · · +

30.019

4.5
.

Thus

E

 σ̂2
e

Red(ts)
Red(s)

 =

 1 0 0
10 35.7262 35.7262
4 15.5383 34.2770


 σ2

e

σ2
ts

σ2
s

 .
Then σ̂2

e

σ̂2
ts

σ̂2
s

 =

 1 0 0
−.29855 .05120 −.05337
.01864 −.02321 .05337


 .3945

23.799
9.170

 =

 .3945
.6114
−.0557

 .

11 Henderson’s Method 2

Henderson’s Method 2 (1953) is probably of interest from an historical viewpoint
only. It has the disadvantage that random by fixed interactions and random within fixed
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nesting are not permitted. It is a relatively easy method, but usually no easier than
the method described in Sect. 10.10, absorption of β , and little if any easier than an
approximate MIVQUE procedure described in Chapter 11.

Method 2 involves correction of the data by a least squares solution to β excluding
µ. Then a Method 1 analysis is carried out under the assumption of a model

y = 1α +
∑

i
Ziui + e.

If the solution to βo is done as described below, the expectations of the Method 1
reductions are identical to those for a truly random model except for an increase in the
coefficients of σ2

e . Partition

Z = [Za Zb]

such that rank

(Za) = rank (Z).

Then partition

X = (Xa Xb)

such that

rank (Xa Za) = rank (X Z).

See Henderson, Searle, and Schaeffer (1974). Solve equations (79) for βa.(
X

′
aXa X

′
aZa

Z
′
aXa Z

′
aZa

)(
βa

ua

)
=

(
X

′
ay

Z
′
ay

)
(79)

Let the upper submatrix (pertaining to βa) of the inverse of the matrix of (79) be denoted
by P. This can be computed as

P = [X
′

aXa −X
′

aZa (Z
′

aZa)
−1Z

′

aXa]
−1. (80)

Now compute

1′y∗ = 1′y − 1′Xaβa. (81)

Z
′

iy
∗ = Z

′

iy − Z
′

iXaβa i = 1, . . . , b. (82)

Then compute the following quadratics

(1′y∗)2/n, and (83)

(Z
′

iy
∗)′(Z

′

iZi)
−1(Z

′

iy
∗) for i = 1, . . . , b. (84)
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The expectations of these quadratics are identical to those with y in place of y∗ except
for an increase in the coefficient of σ2

e computed as follows. Increase in coefficient of σ2
e

in expectation of (83) by
trP(X′a11

′Xa)/n. (85)

Increase in the coefficient of σ2
e in expectation of (84) is

trP(X
′

aZi(Z
′

iZi)
−1Z

′

iXa). (86)

Note that X
′
aZi(Z

′
iZi)

−1Z
′
iXa is the quantity that would be subtracted from X

′
aXa if

we were to ”absorb” ui. σ2
e can be estimated in a number of ways but usually by the

conventional residual

[y′y − (βo)′X′y − (uo)′Z′y]/[n− rank (X Z)].

Sampling variances for Method 2 can be computed by the same procedure as for
Method l except that the variance of adjusted right hand sides of µ and u equations is

increased by

(
1′Xa

Z′Xa

)
P(X

′
a1 X

′
aZ) σ2

e over the unadjusted. As is true for other

quadratic estimators, quadratics in the adjusted right hand sides are uncorrelated with
σ2
e , the OLS residual mean square.

We illustrate Method 2 with our same data, but now we assume that σ2
ts does not

exist. This 2 way mixed model could be done just as easily by Method 3 as by Method 2,
but it suffices to illustrate the latter. Delete µ and t3 and include all 4 levels of s. First
solve for βa in these equations.

18 0 8 3 2 5
12 7 4 1 0

21 0 0 0
9 0 0

3 0
6


(
βa
ua

)
=



113
96

153
71
21
34


The solution is βa = [-1.31154, .04287]′, ua = (7.7106, 8.30702, 7.86007, 6.75962)′. The
adjusted right hand sides are

279
153
71
21
34

−


18 12
8 7
3 4
2 1
5 0


(
−1.31154
.04287

)
=


302.093
163.192
74.763
23.580
40.558

 .

Then the sum of squares of adjusted right hand sides for sires is

(163.192)2

12
+ · · ·+ (40.558)2

6
= 2348.732.
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The adjusted C.F. is (302.093)2/39 = 2340.0095. P is the upper 2x2 of the inverse of the
coefficient matrix (79) is

P =

(
.179532 .110888

.200842

)
.

X′aZi(Z
′
iZi)

−1Z′iXa =

(
8 3 2 5
7 4 1 0

)
21 0 0 0

9 0 0
3 0

6


−1

8 7
3 4
2 1
5 0


=

(
9.547619 4.666667

4.444444

)
.

The trace of this (86) is 3.642 to be added to the coefficient of σ2
e in E (sires S.S). The

trace of P times the following matrix(
18
12

)(
39

)−1
(18 12) =

(
8.307692 5.538462

3.692308

)
.

gives 3.461 to be added to the coefficient of σ2
e in E(CF). Then

E(Sire SS) = 7.642 σ2
e + 39 σ2

s + a quadratic.

E(C.F.) = 4.461 σ2
e + 14.538 σ2

s + the same quadratic.

Then taking some estimate of σ2
e one equates these expectations to the computed sums

of squares.

12 An Unweighted Means ANOVA

A simple method for testing hypotheses approximately is the unweighted means anal-
ysis described in Yates (1934). This method is appropriate for the mixed model described
in Section 4 provided that every subclass is filled and there are no covariates. The ”small-
est” subclass means are taken as the observations as in Section 6 in Chapter 1. Then a
conventional analysis of variance for equal subclass numbers (in this case 1) is performed.
The expectations of these mean squares, except for the coefficients of σ2

e are exactly the
same as they would be had there actually been only one observation per subclass. An
algorithm for finding such expectations is given in Henderson (1959).

The coefficient of σ2
e is the same in every mean square. To compute this let s =

the number of ”smallest” subclasses, and let ni be the number of observations in the ith

subclass. Then the coefficient of σ2
e is∑s

i=1
n−1
i /s. (87)
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Estimate σ2
e by

[y′y −
∑s

i=1
y2
i /ni]/(n− s), (88)

where yi is the sum of observations in the ith subclass. Henderson (1978a) described a
simple algorithm for computing sampling variances for the unweighted means method.

We illustrate estimation by a two way mixed model,

yijk = ai + bj + γij + eijk.

bj is fixed.

V ar(a) = Iσ2
a, V ar(γ) = Iσ2

γ, V ar(e) = Iσ2
e .

Let the data be

nij ȳij.
B B

A 1 2 3 1 2 3
1 5 4 1 8 10 5
2 2 10 5 7 8 4
3 1 4 2 6 9 3
4 2 1 5 10 12 8

The mean squares and their expectation in the unweighted means analysis are

df MS E(ms)
A 3 9.8889 .475 σ2

e + σ2
γ + 3σ2

a

B 2 22.75 .475 σ2
e + σ2

γ + Q(b)
AB 6 .3056 .475 σ2

e + σ2
γ

Suppose σ̂2
e estimated as described above is .2132. Then

σ̂2
γ = .3056− .475(.2132) = .2043,

and

σ̂2
a = (9.8889− .3056)/3 = 3.1944.

The coefficient of σ2
e is (5−1 + 4−1 + ...+ 5−1)/12 = .475.
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13 Mean Squares For Testing K′u

Section 2.c in Chapter 4 described a general method for testing the hypothesis, K′β =
0 against the unrestricted hypothesis. The mean square for this test is

(βo)′K(K′CK)−1K′βo/f.

C is a symmetric g-inverse of the GLS equations or is the corresponding partition of a
g-inverse of the mixed model equations and f is the number of rows in K′ chosen to have
full row rank. Now as in other ANOVA based methods of estimation of variances we can
compute as though u is fixed and then take expectations of the resulting mean squares to
estimate variances. The following precaution must be observed. K′u must be estimable
under a fixed u model. Then we compute

(uo)′K(K′CK)−1K′uo/f, (89)

where uo is some solution to (90) and f = number of rows in K′.(
X′X X′Z
Z′X Z′Z

)(
βo

uo

)
=

(
X′y
Z′y

)
. (90)

The assumption is that V ar(e) = Iσ2
e . C is the lower q × q submatrix of a g-inverse of

the coefficient matrix in (90). Then the expectation of (89) is

f−1 tr K(K′CK)−1K′ V ar(u) + σ2
e . (91)

This method seems particularly appropriate in the filled subclass case for then with in-
teractions it is relatively easy to find estimable functions of u. To illustrate, consider the
two way mixed model of Section 11. Functions for estimating σ2

a are a1 + γ̄1. − a4 − γ̄4.

a2 + γ̄2. − a4 − γ̄4.

a3 + γ̄3. − a4 − γ̄4.

 /3.

Functions for estimating σ2
γ are

[γij − γi3 − γ4j + γ34]/6; i = 1, 2, 3; j = 1, 2.

This is an example of a weighted square of means analysis.

The easiest solution to the OLS equations for the 2 way case is ao, bo = null and
γoij = ȳij. Then the first set of functions can be estimated as γ̄oi. − γ̄o4. (i = 1, 2, 3).
Reduce K′ to this same dimension and take C as a 12×12 diagonal matrix with diagonal
elements = n−1

ij .
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Chapter 11
MIVQUE of Variances and Covariances

C. R. Henderson

1984 - Guelph

The methods described in Chapter 10 for estimation of variances are quadratic,
translation invariant, and unbiased. For the balanced design where there are equal num-
bers of observations in all subclasses and no covariates, equating the ANOVA mean squares
to their expectations yields translation invariant, quadratic, unbiased estimators with
minimum sampling variance regardless of the form of distribution, Albert (1976), see also
Graybill and Wirtham (1956). Unfortunately, such an estimator cannot be derived in the
unbalanced case unless G and R are known at least to proportionality. It is possible,
however, to derive locally best, translation invariant, quadratic, unbiased estimators un-
der the assumption of multivariate normality. This method is sometimes called MIVQUE
and is due to C.R. Rao (1971). Additional pioneering work in this field was done by La
Motte (1970,1971) and by Townsend and Searle (1971). By ”locally best” is meant that
if G̃ =G and R̃ =R, the MIVQUE estimator has minimum sampling variance in the
class of quadratic, unbiased, translation invariant estimators. G̃ and R̃ are prior values
of G and R that are used in computing the estimators. For the models which we have
described in this book MIVQUE based on the mixed model equations is computationally
advantageous. A result due to La Motte (1970) and a suggestion given to me by Harville
have been used in deriving this type of MIVQUE algorithm. The equations to be solved
are in (1). (

X′R̃−1X X′R̃−1Z

Z′R̃−1X Z′R̃−1Z + G̃−1

)(
βo

û

)
=

(
X′R̃−1y

Z′R̃−1y

)
(1)

These are mixed model equations based on the model

y = Xβ + Zu + e. (2)

We define V ar(u), V ar(e) and V ar(y) as in (2, 3, 4, 5, 6, 7, 8) of Chapter 10.

1 La Motte Result For MIVQUE

La Motte defined
V ar(y) = V =

∑k

i=1
Viθi. (3)
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Then
Ṽ =

∑k

i=1
Viθ̃i, (4)

where θ̃i are prior values of θi. The θi are unknown parameters and the Vi are known
matrices of order n× n. He proved that MIVQUE of θ is obtained by computing

(y −Xβo)′Ṽ−1ViṼ
−1(y −Xβo), i = 1, . . . , k, (5)

equating these k quadratics to their expectations, and then solving for θ . βo is any
solution to equations

X′Ṽ−1Xβo = X′Ṽ−1y. (6)

These are GLS equations under the assumption that V = Ṽ.

2 Alternatives To La Motte Quadratics

In this section we show that other quadratics in y−Xβo exist which yield the same
estimates as the La Motte formulation. This is important because there may be quadratics
easier to compute than those of (5), and their expectations may be easier to compute.

Let the k quadratics of (5) be denoted by q. Let E(q) = Bθ, where B is k×k. Then
provided B is nonsingular, MIVQUE of θ is

θ̂ = B−1q. (7)

Let H be any k × k nonsingular matrix. Compute a set of quadratics Hq and equate to
their expectations.

E(Hq) = HE(q) = HBθ. (8)

Then an unbiased estimator is

θo = (HB)−1Hq

= B−1q = θ̂, (9)

the MIVQUE estimator of La Motte. Therefore, if we derive the La Motte quadratics, q,
for MIVQUE, we can find another set of quadratics which are also MIVQUE, and these
are represented by Hq, where H is nonsingular.

3 Quadratics Equal To La Motte’s

The relationship between La Motte’s model and ours is as follows

V of LaMotte = Z


G11g11 G12g12 G13g13 · · ·
G

′
12g12 G22g22 G23g23 · · ·

G
′
13g13 G

′
23g23 G33g33 · · ·

...
...

...

 Z′
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+


R11r11 R12r12 R13r13 · · ·
R

′
12r12 R22r22 R23r23 · · ·

R
′
13r13 R

′
13r23 R33r33 · · ·

...
...

...

 (10)

= ZGZ′ + R. (11)

or V1θ1 = Z


G11 0 0 · · ·
0 0 0 · · ·
0 0 0 · · ·
...

...
...

 Z′g11,

V2θ2 = Z


0 G12 0 · · ·
G

′
12 0 0 · · ·

0 0 0 · · ·
...

...
...

 Z′g12, (12)

etc., and

Vb+1θb+1 =


R11 0 0 · · ·
0 0 0 · · ·
0 0 0 · · ·
...

...
...

 r11,

Vb+2θb+2 =


0 R12 0 · · ·
R

′
12 0 0 · · ·

0 0 0 · · ·
...

...
...

 r12, (13)

etc. Define the first b(b + 1)/2 of (12) as ZG∗ijZ
′ and the last c(c + 1)/2 of (13) as R∗ij.

Then for one of the first b(b+ 1)/2 of La Motte’s quadratic we have

(y −Xβo)′Ṽ−1ZG∗ijZ
′Ṽ−1(y −Xβo). (14)

Write this as
(y −Xβo)′Ṽ−1ZG̃G̃−1G∗ijG̃

−1G̃Z′Ṽ−1(yXβo). (15)

This can be done because G̃G̃−1 = I. Now note that G̃Z′Ṽ−1(y −Xβo) = û = BLUP
of u given G = G̃ and R = R̃. Consequently (15) can be written as

û′G̃−1G∗ijG̃
−1û. (16)

By the same type of argument the last c quadratics are

ê′R̃−1R∗ijR̃
−1ê, (17)
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where ê is BLUP of e given that G = G̃ and R = R̃. Taking into account that

G =


G11g11 G12g12 · · ·
G

′
12g12 G22g22 · · ·

...
...


the matrices of the quadratics in û can be computed easily. Let

G̃−1 =


C11 C12 C13 · · ·
C

′
12 C22 C23 · · ·

C
′
13 C

′
23 C33 · · ·

...
...

...

 = [C1 C2 C3 . . .].

For example,

C2 =


C12

C22

C
′
23

...

 .
Then

G̃−1G∗iiG̃
−1 = CiGiiC

′

i. (18)

G̃−1G∗ijG̃
−1 = CiGijC

′

j + CjG
′

ijCi for i 6= j. (19)

The quadratics in ê are like (18) and (19) with R̃−1, Rij substituted for G̃−1, Gij and
with R̃−1 = [C1 C2 . . .]. For special cases these quadratics simplify considerably. First
consider the case in which all gij = 0. Then

G =


G11g11 0 0 · · ·

0 G22g22 0 · · ·
0 0 G33g33 · · ·
...

...
...

 ,

and

G−1 =


G−1

11 g
−1
11 0 · · ·

0 G−1
22 g

−1
22 · · ·

...
...

 .
Then the quadratics in û become

û
′

iG
−1
ii g

−2
ii û,

or an alternative is obviously
û

′

iG
−1
ii ûi,
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obtained by multiplying these quadratics by

dg(g2
11, g

2
22, . . .). (20)

Similarly if all rij = 0, the quadratics in ê can be converted to

ê
′

iR
−1
ii êi. (21)

The traditional mixed model for variance components reduces to a particularly simple
form. Because all gij = 0, for i 6= j, all Gii = I, and R = I, the quadratics can be written
as

û
′

iûi i = 1, . . . , b, and ê′ê.

Pre-multiplying these quadratics by
1 0 · · · 0
0 1 · · · 0
...

...
σ2
e/σ

2
1 σ2

e/σ
2
2 · · · 1


we obtain 

û
′
1û1

û
′
2û2

...

ê′ê +
∑
i
σ2

e

σ2
i

û
′
iûi

 .

But the last of these quadratics is y′y − y′Xβo − y′Zû, or a quantity corresponding to
the least squares residual. This is the algorithm described in Henderson (1973).

One might wish in this model to estimate σ2
e by the OLS residual mean square, that

is,
σ̂2
e = [y′y − (βo)′X′y − (uo)′Z′y]/[n− rank(X Z)],

where βo, uo are some solution to OLS equations. If this is done, σ̂2
e is not MIVQUE and

neither are σ̂2
i , but they are probably good approximations to MIVQUE.

Another special case is the multiple trait model with additive genetic assumptions
and elements of u for missing observations included. Ordering animals within traits,

y′ = [y
′

1 y
′

2 . . .].

y
′

i is the vector of records on the ith trait.

u′ = (u
′

1 u
′

2 . . .).

ui is the vector of breeding values for the ith trait.

e′ = (e
′

1 e
′

2 . . .).
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Every ui vector has the same number of elements by including missing u. Then

G =


Ag11 Ag12 · · ·
Ag12 Ag22 · · ·
...

...

 = A ∗G0, (22)

where

G0 =


g11 g12 · · ·
g12 g22 · · ·
...

...


is the additive genetic variance- covariance matrix for a non-inbred population, and ∗
denotes the direct product operation.

G−1 =


A−1g11 A−1g12 · · ·
A−1g12 A−1g22 · · ·
...

...

 = A−1 ∗G−1
0 . (23)

Applying the methods of (16) to (18) and (19) the quadratics in û illustrated for a 3 trait
model are

(
B11 B12

B
′
12 B22

)


û
′
1A
−1û1

û
′
1A
−1û2

û
′
1A
−1û3

û
′
2A
−1û2

û
′
2A
−1û3

û
′
3A
−1û3


.

B11 =

 g11g11 2g11g12 2g11g13

2g11g22 + 2g12g12 2g11g23 + 2g12g13

2g11g33 + 2g13g13

 .

B12 =

 g12g12 2g12g13 g13g13

2g12g22 2g12g23 + 2g13g22 2g13g23

2g12g23 2g12g33 + 2g13g23 2g13g33

 .

B22 =

 g22g22 2g22g23 g23g23

2g22g33 + 2g23g23 2g23g33

g33g33

 .

Premultiplying these quadratics in ûi by the inverse of

(
B11 B12

B
′
12 B22

)
we obtain an equiv-

alent set of quadratics that are

û
′

iA
−1ûj for i = 1, . . . , 3; j = i, . . . , 3. (24)
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Similarly if there are no missing observations,

R =


I r11 I r12 · · ·
I r12 I r22 · · ·
...

...


Then quadratics in ê are ê

′
iêj for i = 1, . . . , t; j = i, . . . , t.

4 Computation Of Missing û

In most problems, MIVQUE is easier to compute if missing u are included in û rather
than ignoring them. Section 3 illustrates this with A−1 being the matrix of all quadratics
in û.

Three methods for prediction of elements of u not in the model for y were described
in Chapter 5. Any of these can be used for MIVQUE. Probably the easiest is to include
the missing ones in the mixed model equations.

5 Quadratics In ê With Missing Observations

When there are missing observations the quadratics in ê are easier to envision if we
order the data by traits in animals rather than by animals in traits. Then R is block
diagonal with the order of the ith diagonal block being the number of traits recorded for
the ith animal. Now we do not need to store R̃−1 nor even all of the diagonal blocks.
Rather we need to store only one block for each of the combinations of traits observed.
For example, with 3 traits the possible combinations are

Traits
Combinations 1 2 3

1 X X X
2 X X -
3 X - X
4 - X X
5 X - -
6 - X -
7 - - X

There are 2t − 1 possible combinations for t traits. In the case of sequential culling the
possible types are
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Traits
Combinations 1 2 3

1 X X X
2 X X -
3 X - -

There are t possible combinations for t traits.

The block of R̃−1 for animals with the same traits measured will be identical. Thus
if 50 animals have traits 1 and 2 recorded, there will be 50 identical 2× 2 blocks in R̃−1,
and only one of these needs to be stored.

The same principle applies to the matrices of quadratics in ê. All of the quadratics
are of the form ê

′
iQêi, where êi refers to the subvector of ê pertaining to the ith animal.

But animals with the same record combinations, will have identical matrices of quadratics
for estimation of a particular variance or covariance. The computation of these matrices
is simple. For a particular set of records let the block in R̃−1 be P, which is symmetric
and with order equal to the number of traits recorded. Label rows and columns by trait
number. For example, suppose traits 1, 3, 7 are recorded. Then the rows (and columns)
of P are understood to have labels 1, 3, 7. Let

P ≡ (p1 p2 p3 . . .),

where pi is the ith column vector of P. Then the matrix of the quadratic for estimating
rii is

pip
′

i. (25)

The matrix for estimating rij (i 6= j) is

pip
′

j + pip
′

j. (26)

Let us illustrate with an animal having records on traits 2, 4, 7. The block of R corre-
sponding to this type of information is 6 4 3

8 5
7

 .
Then the block corresponding to R−1 is the inverse of this, which is .25410 −.10656 −.03279

.27049 −.14754
.26230

 .
Then the matrix for estimation of r22 is .25410

−.10656
−.03279

 (.25410 − .10656 − .03279).
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The matrix for computing r27 is .25410
−.10656
−.03279

 (−.03279 − .14754 − .26230)

+ the transpose of this product.

6 Expectations Of Quadratics In û And ê

MIVQUE can be computed by equating certain quadratics in û and in ê to their
expectations. To find the expectations we need a g-inverse of the mixed model coefficient
matrix with G̃ and R̃, prior values, substituted for G and R. The formulas for these
expectations are in Section 6 of Chapter 10. It is obvious from these descriptions of
expectations that extensive matrix products are required. However, some of the matrices
have special forms such as diagonality, block diagonality, and symmetry. It is essential
that these features be exploited. Also note that the trace of the products of several
matrices can be expressed as the trace of the product of two matrices, say trace (AB).
Because only the sum of the diagonals of the product AB is required, it would be foolish
to compute the off-diagonal elements. Some special computing algorithms are

trace (AB) =
∑

i

∑
j
aijbji (27)

when A and B are nonsymmetric.

trace (AB) =
∑

i
aiibii + 2

∑
i

∑
j>i

aijbij (28)

when A and B are both symmetric.

tr (AB) =
∑

i
aiibii (29)

when either A or B or both are diagonal.

It is particularly important to take advantage of the form of matrices of quadratics
in ê in animal models. When the data are ordered by traits within animals the necessary
quadratics have the form

∑
i ê

′
iQêi, where Qi is a block of order equal to the number of

traits observed in the ith animal. Then the expectation of this quadratic is tr Q V ar(êi).
Consequently we do not need to compute all elements of V ar(ê), but rather only the
elements in blocks down the diagonal corresponding to the various Q. In some cases,
depending upon the form of Xβ, these blocks may be identical for animals with the same
traits observed.

Many problems are such that the coefficient matrix is too large for computation of a
g-inverse with present computers. Consequently we present in Section 7 an approximate
MIVQUE based on computing an approximate g-inverse.
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7 Approximate MIVQUE

MIVQUE for large data sets is prohibitively expensive with 1983 computers because
a g-inverse of a very large coefficient matrix is required. Why not use an approximate g-
inverse that is computationally feasible? This was the idea presented by Henderson(1980).
The method is called ”Diagonal MIVQUE” by some animal breeders. The feasibility of
this method and the more general one presented in this section requires that an approx-
imate g-inverse of X′R̃−1X can be computed easily. First ”absorb” βo from the mixed
model equations.(

X′R̃−1X X′R̃−1Z

Z′R̃−1X Z′R̃−1Z + G̃−1

)(
βo

û

)
=

(
X′R̃−1y

Z′R̃−1y

)
. (30)

This gives
[Z′PZ + G̃−1] û = Z′Py (31)

where P = R̃−1 − R̃−1X(X′R̃−1X)−X′R̃−1, and (X′R̃−1X)− is chosen to be symmetric.
From the coefficient matrix of (31) one may see some simple approximate solution to û,
say ũ. Corresponding to this solution is a matrix C̃11 such that

ũ = C̃11Z
′Py (32)

Interpret C̃11 as an approximation to

C11 = [Z′PZ + G̃−1]−1

Then given ũ,

β̃ = (X′R̃−1X)− (X′R̃−1y −X′R̃−1Zũ).

Thus an approximate g-inverse to the coefficient matrix is

C̃ =

(
C̃00 C̃01

C̃10 C̃11

)
=

(
C̃0

C̃1

)
. (33)

C̃00 = (X′R̃−1X)− + (X′R̃−1X)−X′R̃−1ZC̃11Z
′R̃−1X(X′R̃−1X)−.

C̃01 = (X′R̃−1X)−X′R̃−1ZC̃11.

C̃10 = C̃11Z
′R̃−1X(X′R̃−1X)−.

This matrix post-multiplied by

(
X′R̃−1y

Z′R̃−1y

)
equals

(
β̃
ũ

)
. Note that C̃11 may be non-

symmetric.
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What are some possibilities for finding an approximate easy solution to u and conse-
quently for writing C̃11? The key to this decision is the pattern of elements of the matrix
of (31). If the diagonal is large relative to off-diagonal elements of the same row for every
row, setting C̃11 to the inverse of a diagonal matrix formed from the diagonals of the co-
efficient matrix is a logical choice. Harville suggested that for the two way mixed variance
components model one might solve for the main effect elements of u by using only the
diagonals, but the interaction terms would be solved by adjusting the right hand side for
the previously estimated associated main effects and then dividing by the diagonal. This
would result in a lower triangular C̃11.

The multi-trait equations would tend to exhibit block diagonal dominance if the
elements of u are ordered traits within animals. Then C̃11 might well take the form

B−1
1 0 · · ·

0 B−1
2 · · ·

...
...

. . .

 .
where B−1

i is the inverse of the ith diagonal block, Bi. Having solved for ũ and β̃ and
having derived C̃ one would then proceed to compute quadratics in ũ and ẽ as in regular
MIVQUE. Their expectations can be found as described in Section 7 of Chapter 10 except
that C̃ is substituted for C.

8 MIVQUE (0)

MIVQUE simplifies greatly in the conventional variance components model if the
priors are

g̃ii/r̃11 = σ̂2
i /σ̂

2
e = 0 for all i = 1, . . . , b.

Now

Ṽ = Iσ̂2
e , βo = (X′X)−X′y,

and

(y −Xβo)′ Ṽ−1ZiGiiZ
′

iṼ
−1(y −Xβo)

= y′(I−X(X′X)−X′)′ZiZ
′

i(I−X(X′X)−X′)y/σ̂4
e . (34)

Note that this, except for the constant, σ̂4
e , is simply the sum of squares of right hand

sides of the OLS equations pertaining to uoi after absorbing βo. This is easy to compute,
and the expectations are simple. Further, for estimation of σ2

e we derive the quadratic,

y′y − (βo)′X′y, (35)
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and the expectation of this is simple.

This method although simple to compute has been found to have large sampling
variances when σ2

i /σ
2
e departs very much from 0, Quaas and Bolgiano(1979). Approximate

MIVQUE involving diagonal C̃11 is not much more difficult and gives substantially smaller
variances when σ2

i /σ
2
e > 0.

For the general model with G̃ = 0 the MIVQUE computations are effected as follows.
This is an extension of MIVQUE(0) with R 6= Iσ2

e , and Var (ui) 6= Iσ2
i . Absorb βo from

equations (
X′R̃−1X X′R̃−1Z

Z′R̃−1X Z′R̃−1Z

)(
βo

uo

)
=

(
X′R̃−1y

Z′R̃−1y

)
. (36)

Then compute
y′R̃−1y − (y′R̃−1X)(X′R̃−1X)−X′R̃−1y (37)

and riGijrj i=1, . . . , b; j=i, . . . , b, where ri = absorbed right hand side for uoi equations.
Estimate rij from following quadratics

êiR̃ij êj

where
ê = [I−X(X′R̃−1X)−X′R̃−1]y. (38)

9 MIVQUE For Singular G

The formulation of (16) cannot be used if G is singular, neither can (18) if Gii is
singular, nor (25) if A is singular. A simple modification gets around this problem. Solve
for α̂ in (51) of Chapter 5. Then for (16) substitute

α̂′G∗ijα̂, where û = G̃α̂ (39)

For (20) substitute
α̂

′

iGiiα̂i. (40)

For (25) substitute
α̂

′

iAα̂j (41)

See Section 16 for expectations of quadratics in α̂.

10 MIVQUE For The Case R = Iσ2
e

When R = Iσ2
e the mixed model equations can be written as(

X′X X′Z

Z′X Z′Z + σ2
eG̃
−1

)(
βo

û

)
=

(
X′y
Z′y

)
. (42)
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If βo is absorbed, the equations in û are

(Z′PZ + σ2
eG̃
−1)û = Z′Py, (43)

where
P = I−X(X′X)−X′.

Let
(Z′PZ + σ2

eG̃
−1)−1 = C. (44)

Then

û = CZ′Py. (45)

û′Qiû = y′PZC′QiCZ′Py

= tr C′QiCZ′Pyy′PZ. (46)

E(û′Qiû) = tr C′QiC V ar(Z′Py). (47)

V ar(Z′Py) =
∑b

i=1

∑b

j=1
Z′PZiGijZ

′

jPZgij

+ Z′PPZσ2
e . (48)

One might wish to obtain an approximate MIVQUE by estimating σ2
e from the OLS

residual. When this is done, the expectation of the residual is [n− r(X Z)] σ2
e regardless

of the value of G̃. This method is easier than true MIVQUE and has advantages in
computation of sampling variances because the estimator of σ2

e is uncorrelated with the
various û′Qû. This method also is computable with absorption of βo.

A further simplification based on the ideas of Section 7, would be to look for some
simple approximate solution to û in (44). Call this solution ũ and the corresponding
approximate g-inverse of the matrix of (44) C̃. Then proceed as in (46) . . . (48) except
substitute ũ for û and C̃ for C.

11 Sampling Variances

MIVQUE consists of computing û′Qiû, i = 1, . . . , b, where b = number of elements
of g to be estimated, and ê′Qj ê, j = 1, . . . , t, where t = number of elements of r to

be estimated. Let a g-inverse of the mixed model matrix be C ≡
(

Cβ

Cu

)
, and let

W = (X Z).

Then

û = CuW
′R̃−1y,

û′Qû = y′R̃−1WC
′

uQiCuW
′R̃−1y ≡ y′Biy, (49)

ê = (I−WCW′R̃−1)y,
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and

ê′Qj ê = y′[I−WCW′R̃−1]′Qj[I−WCW′R̃−1]y ≡ y′Fjy. (50)

Let

E


y′B1y

...
y′F1y

...

 = P

(
g
r

)
= Pθ, where θ =

(
g
r

)
.

Then MIVQUE of θ is

P−1


y′B1y

...
y′F1y

...

 =


y′H1y
y′H2y

...

 . (51)

Then

V ar(θ̂i) = 2 tr[Hi V ar(y)]2. (52)

Cov(θ̂i, θ̂j) = 2 trHi [V ar(y)] Hj [V ar(y)]. (53)

These are of course quadratics in unknown elements of g and r. A numerical solution is
easier. Let Ṽ = V ar(y) for some assumed values of g and r. Then

V ar(θ̂i) = 2 tr(HiṼ)2. (54)

Cov(θ̂i, θ̂j) = 2 tr(HiṼHjṼ). (55)

If approximate MIVQUE is computed using C̃ an approximation to C , the compu-
tations are the same except that C̃, ũ, ẽ are used in place of C, û, ê.

11.1 Result when σ2
e estimated from OLS residual

When R = Iσ2
e , one can estimate σ2

e by the residual mean square of OLS and an
approximate MIVQUE obtained. The quadratics to be computed in addition to σ̂2

e are
only û′Qiû. Let

E


û′Qiû

...
σ̂2
e

 =

(
P f
0 1

)(
g
σ2
e

)
.

Then

(
ĝ
σ̂2
e

)
=

(
P f
0 1

)−1


û′Qiû

...
σ̂2
e

 =


û′H1û
û′H2û

...
0

+


s1σ̂

2
e

s2σ̂
2
e

...
σ̂2
e

 . (56)
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Then

V ar(ĝi) = 2 tr[Hi V ar(û)]2 + s2
i V ar(σ̂

2
e). (57)

Cov(ĝi, ĝj) = 2 tr[Hi V ar(û) Hj V ar(û)]

+ sisj V ar(σ̂
2
e). (58)

where
V ar(û) = Cu[V ar(r)]C

′

u,

and r equals the right hand sides of mixed model equations.

V ar(û) = W′R̃−1ZGZ′R̃−1W + W′R̃−1RR̃−1W. (59)

If V ar(r) is evaluated with the same values of G and R used in the mixed model equations,
namely G̃ and R̃, then

V ar(r) = W′R̃−1ZG̃Z′R̃−1W + W′R̃−1W. (60)

V ar(σ̂2
e) = 2σ4

e/[n− rank (W)], (61)

where σ̂2
e is the OLS residual mean square. This would presumably be evaluated for σ2

e

= σ̂2
e .

12 Illustrations Of Approximate MIVQUE

12.1 MIVQUE with σ̂2
e = OLS residual

We next illustrate several approximate MIVQUE using as σ̂2
e the OLS residual. The

same numerical example of treatments by sires in Chapter 10 is employed. In all of these
we absorb βo to obtain the equations already presented in (70) to (72) in Chapter 10. We
use prior σ2

e/σ
2
s = 10, σ2

e/σ
2
ts = 5 as in Chapter 10. Then the equations in ŝ and t̂s are

those of (70) to (72) with 10 added to the first 4 diagonals and 5 to the last 10 diagonals.
The inverse of this matrix is in (62), (63) and (64). This gives the solution

ŝ′ = [−.02966, .17793, .02693, −.17520].

t̂s = [.30280, .20042, .05299, −.55621, −.04723,

.04635, .00088, −.31489, .10908, .20582].

(t̂s)′t̂s = .60183, ŝ′ŝ = .06396.
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Upper left 7× 7

.0713 .0137 .0064 .0086 −.0248 .0065 .0070
.0750 .0051 .0062 .0058 −.0195 .0052

.0848 .0037 .0071 .0048 −.0191
.0815 .0118 .0081 .0069

.1331 .0227 .0169
.1486 .0110

.1582


(62)

Upper right 7× 7 and (lower left 7× 7)′

.0112 −.0178 .0121 .0057 −.0147 .0088 .0060

.0085 .0126 −.0177 .0050 .0089 −.0129 .0040

.0071 .0061 .0052 −.0113 −.0004 .0001 .0003
−.0268 −.0009 .0004 .0006 .0063 .0040 −.0102
.0273 .0092 −.0066 −.0027 .0081 −.0045 −.0036
.0177 −.0058 .0071 −.0014 −.0039 .0054 −.0015
.0138 −.0025 −.0011 .0036 −.0003 .0004 −.0001


(63)

Lower right 7× 7

.1412 −.0009 .0005 .0004 −.0039 −.0013 .0052
.1489 .0364 .0147 .0063 −.0054 −.0009

.1521 .0115 −.0057 .0055 .0002
.1737 −.0006 −.0001 .0007

.1561 .0274 .0164
.1634 .0092

.1744


(64)

The expectation of (t̂s)′t̂s is

E[r
′
C′2C2r] = trC′2C2 V ar(r),

where r = right hand sides of the absorbed equations, and C2 is the last 10 rows of the
inverse above.

V ar(r) = matrix of (10.73) to (10.75) σ2
ts + matrix of (10.76)

to (10.78) σ2
s + matrix of (10.70) to (10.72) σ2

e .

C′2C2 is in (65), (66), and (67). Similarly C′1C1 is in (68), (69), and (70) where C2,C1

refer to last 10 rows and last 4 rows of (62) to (64) respectively. This leads to expectations
as follows

E(t̂s
′
t̂s) = .23851 σ2

e + .82246 σ2
ts + .47406 σ2

s .

E(ŝ′ŝ) = .03587 σ2
e + .11852 σ2

ts + .27803 σ2
s .
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Using σ̂2
e = .3945 leads then to estimates,

σ̂2
ts = .6815, σ̂2

s = −.1114.

Upper left 7× 7

.01



.1657 −.0769 −.0301 −.0588 −.3165 .0958 .0982
.1267 −.0167 −.0331 .0987 −.2867 .0815

.0682 −.0215 .0977 .0815 −.2809
.1134 .1201 .1094 .1012

1.9485 .6920 .5532
2.3159 .4018

2.5645


(65)

Upper right 7× 7 and (lower left 7× 7)’

.01



.1224 −.2567 .1594 .0973 −.2418 .1380 .1038

.1065 .1577 −.2466 .0889 .1368 −.2127 .0758

.1018 .1007 .0901 −.1909 −.0029 .0012 .0041
−.3307 −.0017 −.0029 .0046 .1078 .0759 −.1837
.8063 .2207 −.1480 −.0726 .2062 −.1135 −.0927
.5902 −.1364 .1821 −.0457 −.1033 .1505 −.0473
.4805 −.0689 −.0411 .1101 −.0059 .0085 −.0026


(66)

Lower right 7× 7

.01



2.1231 −.0153 .0071 .0082 −.0970 −.0456 .1426
2.3897 1.0959 .5144 .1641 −.1395 −.0247

2.4738 .4303 −.1465 .1450 .0016
3.0553 −.0176 −.0055 .0231

2.5572 .8795 .5633
2.7646 .3559

3.0808


(67)

Upper right 7× 7

.01



.5391 .2087 .1100 .1422 −.1542 .0299 .0510
.5879 .0925 .1109 .0208 −.1295 .0429

.7271 .0705 .0520 .0382 −.1522
.6764 .0814 .0613 .0583

.0840 −.0145 −.0199
.0510 −.0091

.0488


(68)
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Upper right 7× 7 and (lower left 7× 7)’

.01



.0732 −.1066 .0656 .0411 −.0878 .0484 .0393

.0658 .0728 −.1130 .0402 .0503 −.0820 .0317

.0620 .0464 .0431 −.0896 −.0063 .0017 .0046
−.2010 −.0126 .0043 .0083 .0438 .0319 −.0757
−.0496 .0548 −.0360 −.0187 .0488 −.0244 −.0244
−.0274 −.0339 .0450 −.0111 −.0220 .0340 −.0120
−.0198 −.0183 −.0103 .0286 −.0006 .0020 −.0014


(69)

Lower right 7× 7

.01



.0968 −.0025 .0014 .0012 −.0261 −.0116 .0377
.0514 −.0406 −.0108 .0366 −.0321 −.0045

.0485 −.0079 −.0335 .0335 0
.0187 −.0031 −.0014 .0045

.0335 −.0219 −.0117
.0258 −.0039

.0156


(70)

12.2 Approximate MIVQUE using a diagonal g-inverse

An easy approximate MIVQUE involves solving for û in the reduced equations by
dividing the right hand sides by the corresponding diagonal coefficient. Thus the approx-
imate C, denoted by C̃ is diagonal with diagonal elements the reciprocal of the diagonals
of (10.70) to (10.72). This gives

C̃ = dg (.0516, .0598, .0788, .0690, .1059, .1333, .1475, .1161, .1263, .1304, .1690,
.1429, .1525, .1698)

and an approximate solution,

ũ′ = (.0057, .2758, .0350, -.3563, .4000, .2889, .0656, -.7419, -.1263, .1304, 0, -.3810,
.2203, .2076).

Then (t̂s)′t̂s = 1.06794 with expectation,

.4024 σ2
e + 1.5570 (σ2

ts + σ2
s).

Also ŝ′ŝ = .20426 with expectation,

.0871 σ2
e + .3510 σ2

ts + .7910 σ2
s .

Now
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C2C
′
2 = dg (0, 0, 0, 0, 1.1211, 1.7778, 2.1768, 1.3486, 1.5959, 1.7013, 2.8566, 2.0408,

2.3269, 2.8836)/100,

and

C1C
′
1 = dg (.2668, .3576, .6205, .4756, 0, 0, 0, 0, 0, 0, 0, 0,, 0, 0, 0, 0, 0, 0)/100.

Consequently one would need to compute only the diagonals of (10.70) to (10.72), if one
were to use this method of estimation.

12.3 Approximate MIVQUE using a block diagonal approxi-
mate g-inverse

Examination of (10.70) to (10.72) shows that a subset of coefficients, namely [sj, ts1j,
ts2j . . .] tends to be dominant. Consequently one might wish to exploit this structure. If
the t̂sij were reordered by i within j and the interactions associated with si placed adjacent
to si, the matrix would exhibit block diagonal dominance. Consequently we solve for ũ
in equations with the coefficient matrix zeroed except for coefficients of sj and associated
tsij, etc. blocks. This matrix is in (71, 72, and 73) below.

Upper left 7× 7

19.361 0 0 0 4.444 0 0
16.722 0 0 0 2.5 0

12.694 0 0 0 1.778
14.5 0 0 0

9.444 0 0
7.5 0

6.778


(71)

Upper right 7× 7 and (lower left 7× 7)’

0 2.917 0 0 2. 0 0
0 0 2.667 0 0 1.556 0
0 2 0 .917 0 0 0
3.611 0 0 0 0 0 .889
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


(72)

Lower right 7× 7

dg (8.611, 7.9167, 7.6667, 5.9167, 7.0, 6.556, 5.889) (73)
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A matrix like (71) to (73) is easy to invert if we visualize the diagonal blocks with re-
ordering. For example,


19.361 4.444 2.917 2.000

9.444 0 0
7.917 0

7.000


−1

=


.0640 −.0301 −.0236 −.0183

.1201 .0111 .0086
.1350 .0067

.1481

 .

This illustrates that only 42 or 32 order matrices need to be inverted. Also, each of those
has a diagonal submatrix of order either 3 or 2. The resulting solution vector is

(-.0343, .2192, .0271, -.2079, .4162, .2158, .0585, -.6547, -.1137, .0542, -.0042, -.3711,
.1683, .2389).

This gives (t̃s)′t̃s = .8909 with expectation

.32515 σ2
e + 1.22797 σ2

ts + .79344 σ2
s ,

and s̃′s̃ = .0932 with expectation

.05120 σ2
e + .18995 σ2

ts + .45675 σ2
s .

12.4 Approximate MIVQUE using a triangular block diagonal
approximate g-inverse

Another possibility for finding an approximate solution is to compute s̃ by dividing
the right hand side by the corresponding diagonal. Then t̃s are solved by adjusting the
right hand side for the associated s̃ and dividing by the diagonal coefficient. This leads
to a block triangular coefficient matrix when ts are placed adjacent to s. Without such
re-ordering the matrix is as shown in (74), (75), and (76).

Upper left 7× 7

19.361 0 0 0 0 0 0
0 16.722 0 0 0 0 0
0 0 12.694 0 0 0 0
0 0 0 14.5 0 0 0

4.444 0 0 0 9.444 0 0
0 2.5 0 0 0 7.5 0
0 0 1.778 0 0 0 6.778


(74)

Upper right 7× 7 = null matrix
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Lower left 7× 7 

0 0 0 3.611 0 0 0
2.917 0 0 0 0 0 0

0 2.667 0 0 0 0 0
0 0 .917 0 0 0 0

2.0 0 0 0 0 0 0
0 1.556 0 0 0 0 0
0 0 0 .889 0 0 0


(75)

Lower right 7× 7

dg (8.611, 7.917, 7.667, 5.917, 7.0, 6.556, 5.889) (76)

This matrix is particularly easy to invert. The inverse has the zero elements in exactly
the same position as the original matrix and one can obtain these by inverting triangular
blocks illustrated by


19.361 0 0 0
4.444 9.4444 0 0
2.917 0 7.917 0
2.000 0 0 7.000


−1

=


.0516 0 0 0
−.0243 .1059 0 0
−.0190 0 .1263 0
−.0148 0 0 .1429

 .

This results in the solution

(.0057, .2758, .0350, -.3563, .3973, .1970, .0564, -.5925, -.1284, .0345, -.0054, -.3826, .1549,
.2613).

This gives (t̃s)′t̃s = .80728 with expectation

.30426 σ2
e + 1.12858σ2

ts + .60987 σ2
s ,

and s̃′s̃ = .20426 with expectation

.08714 σ2
e + .35104σ2

ts + .79104 σ2
s .

13 An Algorithm for R = R∗σ
2
e and Cov (ui,u

′
j) = 0

Simplification of MIVQUE computations result if

R = R∗σ
2
e , Var (ui) = G∗iσ

2
e ; and Cov (ui,u

′

j) = 0.
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R∗ and the G∗i are known, and we wish to estimate σ2
e and the σ2

i . The mixed model
equations can be written as

X′R−1
∗ X X′R−1

∗ Z1 X′R−1
∗ Z2 . . .

Z
′
1R
−1
∗ X Z

′
1R
−1
∗ Z1 + G−1

∗1 α1 Z
′
1R
−1
∗ Z2 . . .

Z
′
2R
−1
∗ X Z

′
2R
−1
∗ Z1 Z

′
2R
−1
∗ Z2 + G−1

∗2 α2 . . .
...

...
...




βo

û1

û2
...

 =


X′R−1

∗ y
Z

′
1R
−1
∗ y

Z
′
2R
−1
∗ y

...

 . (77)

αi = prior values of σ2
e/σ

2
i . A set of quadratics equivalent to La Motte’s are

ê′R−1
∗ ê, û

′

iG
−1
∗i ûi (i = 1, 2, . . .).

But because ê′R−1
∗ ê = y′R−1

∗ y - (soln. vector)’ (r.h.s. vector)

−
∑

i
αiû

′

iG
−1
∗i ûi,

an equivalent set of quadratics is

y′R−1
∗ y − (soln. vector)′ (r.h.s. vector)

and

û
′

iG
−1
∗i ûi (i = 1, 2, . . .).

14 Illustration Of MIVQUE In Multivariate Model

We illustrate several of the principles regarding MIVQUE with the following design

No. of Progeny
Sires

Treatment 1 2 3
1 1 2 0
2 2 2 2

We assume treatments fixed with means t1, t2 respectively. The three sires are a random
sample of unrelated sires from some population. Sire 1 had one progeny on treatment
1, and 2 different progeny on treatment 2, etc. for the other 2 sires. The sire and error
variances are different for the 2 treatments. Further there is a non-zero error covariance
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between treatments. Thus we have to estimate g11 = sire variance for treatment l, g22

= sire variance for treatment 2, g12 = sire covariance, r11 = error variance for treatment
1, and r22 = error variance for treatment 2. We would expect no error covariance if the
progeny are from unrelated dams as we shall assume. The record vector ordered by sires
in treatments is [2, 3, 5, 7, 5, 9, 6, 8, 3].

We first use the basic La Motte method.

V1 pertaining to g11 =



1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0

1 0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0
0 0 0 0

0 0 0
0 0

0


.

V2 pertaining to g12 =



0 0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0

0 0 0 1 1 0 0
0 0 0 0 0 0

0 0 0 0 0
0 0 0 0

0 0 0
0 0

0


.

V3 pertaining to g22 =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0
1 1 0 0 0 0

1 0 0 0 0
1 1 0 0

1 0 0
1 1

1


.

V4 pertaining to r11 = dg [1, 1, 1, 0, 0, 0, 0, 0, 0].

V5 pertaining to r22 = dg [0, 0, 0, 1, 1, 1, 1, 1, 1].
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Use prior values of g11 = 3, g12 = 2, g22 = 4, r11 = 30, r22 = 35. Only the proportionality
of these is of concern. Using these values

Ṽ =



33 0 0 2 2 0 0 0 0
33 3 0 0 2 2 0 0

33 0 0 2 2 0 0
39 4 0 0 0 0

39 0 0 0 0
39 4 0 0

39 0 0
39 4

39


.

Computing Ṽ−1ViṼ
−1 we obtain the following values for Qi (i=1, . . . ,5). These are in

the following table (times .001), only non-zero elements are shown.

Element Q1 Q2 Q3 Q4 Q5

(1,1) .92872 -.17278 .00804 .92872 .00402
(1,4),(1,5) -.04320 .71675 -.06630 -.04320 -.03315
(2,2),(2,3) .78781 -.14657 .00682 .94946 .00341
(2,6),(2,7) -.07328 .66638 -.06135 -.03664 -.03068

(3,3) .78781 -.14657 .00682 .94946 .00341
(3,6),(3,7) -.07328 .66638 -.06135 -.03664 -.03068

(4,4) .00201 -.06630 .54698 .00201 .68165
(4,5) .00201 -.06630 .54698 .00201 -.13467
(5,5) .00201 -.06630 .54698 .00201 .68165
(6,6) .00682 -.12271 .55219 .00341 .68426
(6,7) .00682 -.12271 .55219 .00341 -.13207
(7,7) .00682 -.12271 .55219 .00341 .67858

(8,8),(9,9) 0 0 .54083 0 .67858
(8,9) 0 0 .54083 0 -.13775

We need y −Xβo, βo being a GLS solution. The GLS equations are(
.08661 −.008057

−.008057 .140289

)
βo =

(
.229319
.862389

)
.

The solution is [3.2368, 6.3333]. Then
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y −Xβo = [−1.2368,−.2368, 1.7632, .6667, −1.3333, 2.6667,

−.3333, 1.6667, −3.3333]′

= [I−X(X′V−1X)−X′V−1]y ≡ T′y.

Next we need T′ViT (i=1, . . . ,5) for the variance of y −Xβo. These are

Element T′V1T T′V2T T′V3T T′V4T T′V5T
(1,1) .84017 -.03573 .00182 .63013 .00091

(1,2),(1,3) -.45611 -.00817 .00182 -.34208 .00091
(1,4),(1,5) 0 .64814 .00172 0 .00086
(1,6),(1,7) 0 -.64814 .02928 0 .01464
(1,8),(1,9)
(2,8),(2,9) 0 0 -.03101 0 -.01550
(3,8),(3,9)
(2,2),(3,3) .24761 .01940 .00182 .68571 .00091

(2,3) .24761 .01940 .00182 -.31429 .00091
(2,4),(2,5) 0 -.35186 .00172 0 .00086
(3,4),(3,5)
(2,6),(2,7) 0 .35186 .02928 0 .01464
(3,6),(3,7)

(4,4),(5,5),(6,6) 0 0 .66667 0 .83333
(7,7),(8,8),(9,9)
(4,5),(6,7),(8,9) 0 0 .66667 0 -.16667
(4,6),(4,7),(4,8)
(4,9),(5,6),(5,7) 0 0 -.33333 0 -.16667
(5,8),(5,9),(6,8)
(6,9),(7,8),(7,9)

Taking all combinations of tr QiT
′VjT for the expectation matrix and equating to (y−

Xβo)′Qi(y −Xβo) we have these equations to solve.
.00156056 −.00029034 .00001350 .00117042 .000006752

.00372880 −.00034435 −.00021775 −.00017218
.00435858 .00001012 .00217929

.00198893 .00000506
.00353862



g11

g12

g22

r11

r22

 =


.00270080
.00462513
.00423360
.00424783
.01762701

 .
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This gives the solution [.500, 1.496, -2.083, 2.000, 6.333]. Note that the ĝij do not fall in
the parameter space, but this is not surprising with such a small set of data.

Next we illustrate with quadratics in û1, . . . , û5 and ê1, . . . , ê9 using the same priors
as before.

G∗11 = dg (1, 1, 0, 0, 0),

G∗12 =


0 0 1 0 0

0 0 1 0
0 0 0

0 0
0

 ,

G∗22 = dg (0, 0, 1, 1, 1), R̃ =

(
30 I 0
0 35 I

)
.

R∗11 = dg (1, 1, 1, 0, 0, 0, 0, 0, 0),

R∗22 = dg (0, 0, 0, 1, 1, 1, 1, 1, 1),

G̃ =


3 0 2 0 0

3 0 2 0
4 0 0

4 0
4

 .

From these, the 3 matrices of quadratics in û are
.25 0 −.125 0 0

.25 0 −.125 0
.0625 0 0

.0625 0
0

 ,

−.25 0 .25 0 0

−.25 0 .25 0
−.1875 0 0

−.1875 0
0

 ,

and


.0625 0 −.09375 0 0

.0625 −.09375 0 0
.140625 0 0

.140625 0
.0625

 .

Similarly matrices of quadratics in ê are

dg (.00111111, .00111111, .00111111, 0, 0, 0, 0, 0, 0),

and

dg (0, 0, 0, 1, 1, 1, 1, 1, 1)*.00081633.
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The mixed model coefficient matrix is

.1 0 .03333 .06667 0 0 0
.17143 0 0 .05714 .05714 .05714

.53333 0 −.25 0 0
.56667 0 −.25 0

.43214 0 0
.43214 0

.30714


.

The right hand side vector is

[.33333, 1.08571, .06667, .26667, .34286, .42857, .31429]′.

The solution is

[3.2368, 6.3333, -.1344, .2119, -.1218, .2769, -.1550].

Let the last 5 rows of the inverse of the matrix above = Cu. Then

V ar(û) = CuW
′R̃−1Z(G∗11g11 + G∗12g12 + G∗22g22)Z

′R̃−1WC
′

u

+CuW
′R̃−1(R∗11r11 + R∗22r22)R̃

−1WC
′

u

=


.006179 −.006179 .003574 −.003574 0

.006179 −.003574 .003574 0
.002068 −.002068 0

.002068 0
0

 g11

+


.009191 −.009191 .012667 −.012667 0

.009191 −.012667 .012667 0
.011580 −.011580 0

.011580 0
0

 g12

+


.004860 −.001976 .010329 −.004560 −.005769

.004860 −.004560 .010329 −.005769
.021980 −.010443 −.011538

.021980 −.011538
.023076

 g22

+


.004634 −.004634 .002681 −.002681 0

.004634 −.002681 .002681 0
.001551 −.001551 0

.001551 0
0

 r11
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+


.002430 −.000988 .005164 −.002280 −.002884

.002430 −.002280 .005164 −.002884
.010990 −.005221 −.005769

.010990 −.005769
.011538

 r22.

e′ = [−1.1024, −4488, 1.5512, .7885, −1.2115, 2.3898, −.6102, 1.8217, −3.1783].

Let C be a g-inverse of the mixed model coefficient matrix, and T = I −WCW′R̃−1.
Then

V ar(ê) = T(ZG∗11Z
′g11 + ZG∗12Z

′g12 + ZG22Z
′g22 + R∗11r11 + R∗22r22)T

′

=



.702 −.351 −.351 −.038 −.038 .031 .038 0 0
.176 .176 .019 .019 −.019 −.019 0 0

.176 .019 .019 −.019 −.019 0 0
.002 .002 −.002 −.002 0 0

.002 −.002 −.002 0 0
.002 .002 0 0

.002 0 0
0 0

0


g11

+



−.131 .065 .065 .489 .489 −.489 −.489 0 0
−.033 −.033 −.245 −.245 .245 .245 0 0

−.033 −.245 −.245 .245 .245 0 0
−.053 −.053 .053 .053 0 0

−.053 .053 .053 0 0
−.053 −.053 0 0

−.053 0 0
0 0

0


g12

+



.006 −.003 −.003 −.045 −.045 .045 .045 0 0
.002 .002 .023 .023 −.023 −.023 0 0

.002 .023 .023 −.023 −.023 0 0
.447 .447 −.226 −.226 −.221 −.221

.447 −.226 −.226 −.221 −.221
.447 .447 −.221 −.221

.447 −.221 −.221
.442 .442

.442


g22
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+



.527 −.263 −.263 −.029 −.029 .029 .029 0 0
.632 −.369 .014 .014 −.014 −.014 0 0

.632 .014 .014 −.014 −.014 0 0
.002 .002 −.002 −.002 0 0

.002 −.002 −.002 0 0
.002 .002 0 0

.002 0 0
0 0

0


r11

+



.003 −.002 −.002 −.023 −.023 .023 .023 0 0
.001 .001 .011 .011 −.011 −.011 0 0

.001 .011 .011 −.011 −.011 0 0
.723 −.277 −.113 −.113 −.110 −.110

.723 −.113 −.113 −.110 −.110
.723 −.277 −.110 −.110

.723 −.110 −.110
.721 −.279

.721


r22.

Taking the traces of products of Q1, Q2, Q3 with V ar(û) and of Q4, Q5 with V ar(ê)
we get the same expectations as in the La Motte method. Also the quadratics in û and
ê are the same as the La Motte quadratics in (y −Xβo).

If û6 is included, the same quadratics and expectations are obtained. If û6 is included
and we compute the following quadratics in û.

û′ dg (1 1 1 0 0 0) û, û′



0 0 0 1 0 0
0 0 0 1 0

0 0 0 1
0 0 0

0 0
0


û,

and û′ dg (0, 0, 0, 1, 1, 1) û and equate to expectations we obtain exactly the same
estimates as in the other three methods. We also could have computed the following
quadratics in ê rather than the ones used, namely

ê′ dg (1 1 1 0 0 0 0 0 0)ê and ê′ dg (0 0 0 1 1 1 1 1 1) ê.

Also we could have computed an approximate MIVQUE by estimating r11 from within
sires in treatment 1 and r22 from within sires in treatment 2.

In most problems the ”error” variances and covariances contribute markedly to com-
putational labor. If no simplification of this computation can be effected, the La Motte
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quadratics might be used in place of quadratics in e. Remember, however, that Ṽ−1 is
usually a large matrix impossible to compute by conventional methods. But if R̃−1, G̃−1

and (Z′R̃−1Z + G̃−1)−1 are relatively easy to compute one can employ the results,

Ṽ−1 = R̃−1 − R̃−1Z(Z′R̃−1Z + G̃−1)−1ZR̃−1.

As already discussed, in most genetic problems simple quadratics in û can be derived
usually of the form

û
′

iûj or ûiA
−1ûj.

Then these might be used with the La Motte ones for the rij rather than quadratics in ê
for the rij. The La Motte quadratics are in (y −Xβo), the variance of y −Xβo being

[I−X(X′Ṽ−1X)−X′Ṽ−1]V[I−X(X′Ṽ−1X)−X′Ṽ−1]′.

Remember that Ṽ 6= V in general, and V should be written in terms of gij, rij for
purposes of taking expectations.

15 Other Types Of MIVQUE

The MIVQUE estimators of this chapter are translation invariant and unbiased. La
Motte also presented other estimators including not translation invariant biased estimators
and translation invariant biased estimators.

15.1 Not translation invariant and biased

The LaMotte estimator of this type is

θ̂i = θ̃i (y −Xβ̃)′Ṽ−1(y −Xβ̃)/(n + 2),

where θ̃, β̃, and Ṽ are priors. This can also be computed as

θ̂i = θ̃i [(y −Xβ̃)′R̃−1(y −Xβ̃)− û′Z′R̃−1(y −Xβ̃)]/(n+ 2),

where
û = (Z′R̃−1Z + G̃−1)−1Z′R̃−1(y −Xβ̃).

The lower bound on MSE of θ̂i is 2θ̃2
i /(n + 2), when Ṽ, β̃ are used as priors.
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15.2 Translation invariant and biased

An estimator of this type is

θ̂i = θ̃i (y −Xβo)′Ṽ−1(y −Xβo)/(n− r + 2).

This can be written as

θ̃i [y′R̃−1y − (βo)′X′R̃−1y − û′Z′R̃−1y]/(n− r + 2).

βo and û are solution to mixed model equations with G = G̃ and R = R̃. The lower
bound on MSE of θ̂i is 2θ̃2

i /(n−r+2) when Ṽ is used as the prior for V. The lower bound
on θ̂i for the translation invariant, unbiased MIVQUE is 2di, when di is the ith diagonal
of G−1

0 and the ijth element of G0 is trW0V
∗
iW0V

∗
i for

W0 = Ṽ−1 − Ṽ−1X(X′Ṽ−1X)−X′Ṽ−1.

The estimators of sections 15.1 and 15.2 have the peculiar property that θ̂i/θ̂j = θ̃i/θ̃j.
Thus the ratios of estimators are exactly proportional to the ratios of the priors used in
the solution.

16 Expectations Of Quadratics In α̂

Let some g-inverse of (5.51) with priors on G and R be(
C11 C12

C
′
12 C22

)
≡
(

C1

C2

)

Then α̂ = C2r, where r is the right hand vector of (5.51), and

E(α̂′Qα̂) = trQ V ar(α̂)

= trQC2[V ar(r)]C
′

2.

V ar(r) =

(
X′R̃−1Z

G̃Z′R−1Z

)
G (Z′R̃−1X Z′R̃−1ZG̃)

+

(
X′R̃−1

G̃Z′R̃−1

)
R (R̃−1X R̃−1ZG̃). (78)

When R = Iσ2
e and G = G∗σ

2
e , α̂ can be obtained from the solution to(

X′X X′ZG∗
G∗Z

′X G∗Z
′ZG∗ + G∗

)(
βo

α̂

)
=

(
X′y
G∗Z

′y

)
. (79)

31



In this case C2 is the last g rows of a g-inverse of (79).

V ar(r) =

(
X′Z

G̃∗Z
′Z

)
G (Z′X Z′ZG̃∗)σ

2
e

+

(
X′X X′ZG̃∗
G̃∗Z

′X G̃∗Z
′ZG̃∗

)
σ2
e . (80)
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Chapter 12
REML and ML Estimation

C. R. Henderson

1984 - Guelph

1 Iterative MIVQUE

The restricted maximum likelihood estimator (REML) of Patterson and Thompson
(1971) can be obtained by iterating on MIVQUE, Harville (1977). Let the prior value of g
and r be denoted by g0 and r0. Then compute MIVQUE and denote the estimates by g1

and r1. Next use these as priors in MIVQUE and denote the estimates g2 and r2. Continue
this process until gk+1 = gk and rk+1 = rk. Several problems must be recognized.

1. Convergence may be prohibitively slow or may not occur at all.

2. If convergence does occur, it may be to a local rather than a global maximum.

3. If convergence does occur, g and r may not fall in the parameter space.

We can check the last by noting that both Gk and Rk must be positive definite or positive
semidefinite at convergence, where Gk and Rk are

ĝ11 ĝ12 ...
ĝ12 ĝ22 ...
. .
. .

 and


r̂11 r̂12 ...
r̂12 r̂22 ...
. .
. .

 .

For positive definitness or positive semidefiniteness all eigenvalues of Gk and Rk must be
non-negative. Writing a computer program that will guarantee this is not trivial. One
possibility is to check at each round, and if the requirement is not met, new starting
values are chosen. Another possibility is to alter some elements of Ĝ or R̂ at each round
in which either Ĝ or R̂ is not a valid estimator. (LRS note: Other possibilities are bending
in which eigenvalues are modified to be positive and the covariance matrix is reformed
using the new eigenvalues with the eigenvectors.)

Quadratic, unbiased estimators may lead to solutions not in the parameter space.
This is the price to pay for unbiasedness. If the estimates are modified to force them
into the parameter space, unbiasedness no longer can be claimed. What should be done
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in practice? If the purpose of estimation is to accumulate evidence on parameters with
other research, one should report the invalid estimates, for otherwise the average of many
estimates will be biased. On the other hand, if the results of the analysis are to be
used immediately, for example, in BLUP, the estimate should be required to fall in the
parameter space. It would seem illogical for example, to reduce the diagonals of û in
mixed model equations because the diagonals of Ḡ−1 are negative.

2 An Alternative Algorithm For REML

An alternative algorithm for REML that is considerably easier per round of iteration
than iterative MIVQUE will now be described. There is, however, some evidence that
convergence is slower than in the iterative MIVQUE algorithm. The method is based on
the following principle. At each round of iteration find the expectations of the quadratics
under the pretense that the current solutions to ĝ and r̂ are equal to g and r. This leads
to much simpler expectations. Note, however, that the first iterate under this algorithm
is not MIVQUE. This is the EM (expectation maximization) algorithm, Dempster et al.
(1977).

From Henderson (1975a), when ḡ = g and r̄ = r

V ar(û) = G−C11. (1)

V ar(ê) = R−WCW′ = R− S. (2)

The proof of this is

V ar(ê) = Cov (ê, e′) = Cov[(y −WCW′R−1y), e′] = R−WCW′. (3)

A g-inverse of the mixed model coefficient matrix is(
C00 C01

C10 C11

)
= C.

Note that if we proceed as in Section 11.5 we will need only diagonal blocks of WCW′

corresponding to the diagonal blocks of R .

V ar(û) =
∑

i

∑
j≥i

G∗ijgij − C11 (4)

See Chapter 11, Section 3 for definition of G∗. Let C, S, û, and ê be the values computed
for the kth round of iteration. Then solve in the k+l round of iteration for values of g, r
from the following set of equations.

trQ1G = û′Q1û + trQ1C11

...
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trQbG = û′Qbû
′ + trQbC11 (5)

trQb+1R = ê′Qb+1ê + trQb+1S
...

trQcR = ê′Qcê + trQcS.

Note that at each round a set of equations must be solved for all elements of g , and
another set of all elements of r . In some cases, however, Q ’s can be found such that
only one element of gij (or rij) appears on the left hand side of each equation of (5). Note
also that if Ḡ−1 appears in a Qi the value of Qi changes at each round of iteration. The
same applies to R̄−1 appearing in Qi for ê. Consequently it is desirable to find Qi that
isolate a single gij or rij in each left hand side of (5) and that are not dependent upon Ḡ
and R̄. This can be done for the gij in all genetic problems with which I am familiar.

The second algorithm for REML appears to have the property that if positive definite
G and R are chosen for starting values, convergence, if it occurs, will always be to positive
definite Ĝ and R̂. This suggestion has been made by Smith (1982).

3 ML Estimation

A slight change in the second algorithm for REML, presented in Section 2 results
in an EM type ML algorithm. In place of C11 substitute (Z′R̄−1Z + G−1)−1. In place
of WCW′ substitute Z(Z′R̄−1Z + Ḡ−1)−1Z′. Using a result reported by Laird and Ware
(1982) substituting ML estimates of G and R for the corresponding parameters in the
mixed model equations yields empirical Bayes estimates of u . As stated in Chapter 8
the û are also ML estimates of the conditional means of u .

If one wishes to use the LaMotte type quadratics for REML and ML, the procedure
is as follows. For REML iterate on

trQj

∑
i

V∗i θi = (y −Xβo)′Qj(y −Xβo) + trQj X(X′V̄−1X)−X′.

Qj are the quadratics computed by the LaMotte method described in Chapter 11. Also
this chapter describes the V∗i . Further, βo is a GLS solution.

ML is computed in the same way as REML except that

trQj X(X′V̄−1X)−X′ is deleted.

The EM type algorithm converges slowly if the maximizing value of one or more param-
eters is near the boundary of the parameter space, eg. σ̂2

i → 0. The result of Hartley and
Rao (1967) can be derived by this general EM algorithm.
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4 Approximate REML

REML by either iterative MIVQUE or by the method of Section 2 is costly because
every round of iteration requires a g-inverse of the mixed model coefficient matrix. The
cost could be reduced markedly by iterating on approximate MIVQUE of Section 11.7.
Further simplification would result in the R = Iσ2

e case by using the residual mean square
of OLS as the estimate of σ2

e . Another possibility is to use the method of Section 2, but
with an approximate g-inverse and solution at each round of iteration. The properties of
such an estimation are unknown.

5 A Simple Result For Expectation Of Residual Sum

Of Squares

Section 11.13 shows that in a model with R = R∗σ
2
e , V ar(ui) = G∗iσ

2
e , and

Cov(ui,u
′
j) = 0, one of the quadratics that can be used is

y′R−1
∗ y − (soln. vector)′ (r.h.s. vector) (6)

with equations written as (77) in Chapter 11. R∗ and G∗i are known. Then if α = σ2
e/σ

2
i ,

as is defined in taking expectations for the computations of Section 2, the expectation of
(6) is

[n− rank (X)]σ2
e . (7)

6 Biased Estimation With Few Iterations

What if one has only limited data to estimate a set of variances and covariances,
but prior estimates of these parameters have utilized much more data? In that case it
might be logical to iterate only a few rounds using the EM type algorithm for REML or
ML. Then the estimates would be a compromise between the priors and those that would
be obtained by iterating to convergence. This is similar to the consequences of Bayesian
estimation. If the priors are good, it is likely that the MSE will be smaller than those for
ML or REML. A small simulation trial illustrates this. The model assumed was

yij = βXij + ai + eij.

X′ = (3, 2, 5, 1, 3, 2, 3, 6, 7, 2, 3, 5, 3, 2).

ni = (3, 2, 4, 5).

V ar(e) = 4 I,

V ar(a) = I,

4



Cov(a, e′) = 0.

5000 samples were generated under this model and EM type REML was carried out with
starting values of σ2

e/σ
2
a = 4, .5, and 100. Average values and MSE were computed for

rounds 1, 2, ..., 9 of iteration.

Starting Value σ2
e/σ

2
a = 4

σ̂2
e σ̂2

a σ̂2
e/σ̂

2
a

Rounds Av. MSE Av. MSE Av. MSE
1 3.98 2.37 1.00 .22 4.18 .81
2 3.93 2.31 1.04 .40 4.44 2.97
3 3.88 2.31 1.10 .70 4.75 6.26
4 3.83 2.34 1.16 1.08 5.09 10.60
5 3.79 2.39 1.22 1.48 5.47 15.97
6 3.77 2.44 1.27 1.86 5.86 22.40
7 3.75 2.48 1.31 2.18 6.26 29.90
8 3.74 2.51 1.34 2.43 6.67 38.49
9 3.73 2.53 1.35 2.62 7.09 48.17

In this case only one round appears to be best for estimating σ2
e/σ

2
a .

Starting Value σ2
e/σ

2
a = .5

σ̂2
e σ̂2

a σ̂2
e/σ̂

2
a

Rounds Av. MSE Av. MSE Av. MSE
1 3.14 2.42 3.21 7.27 1.08 8.70
2 3.30 2.37 2.53 4.79 1.66 6.27
3 3.40 2.38 2.20 4.05 2.22 5.11
4 3.46 2.41 2.01 3.77 2.75 5.23
5 3.51 2.43 1.88 3.64 3.28 6.60
6 3.55 2.45 1.79 3.58 3.78 9.20
7 3.57 2.47 1.73 3.54 4.28 12.99
8 3.60 2.49 1.67 3.51 4.76 17.97
9 3.61 2.51 1.63 3.50 5.23 24.11
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Starting Value σ̂2
e/σ̂

2
a = 100

σ̂2
e σ̂2

a σ̂2
e/σ̂

2
a

Rounds Av. MSE Av. MSE Av. MSE
1 4.76 4.40 .05 .91 .99 9011
2 4.76 4.39 .05 .90 .98 8818
3 4.76 4.38 .05 .90 .97 8638
4 4.75 4.37 .05 .90 .96 8470
5 4.75 4.35 .05 .90 .95 8315
6 4.75 4.34 .05 .90 .94 8172
7 4.75 4.32 .05 .90 .92 8042
8 4.74 4.31 .06 .89 .91 7923
9 4.74 4.28 .06 .89 .90 7816

Convergence with this very high starting value of σ2
e/σ

2
a relative to the true value of 4 is

very slow but the estimates were improving with each round.

7 The Problem Of Finding Permissible Estimates

Statisticians and users of statistics have for many years discussed the problem of
”estimates” of variances that are less than zero. Most commonly employed methods
of estimation are quadratic, unbiased, and translation invariant, for example ANOVA
estimators, Methods 1,2, and 3 of Henderson, and MIVQUE. In all of these methods there
is a positive probability that a solution to one or more variances will be negative. Strictly
speaking, these are not really estimates if we define, as some do, that an estimate must
lie in the parameter space. But, in general, we cannot obtain unbiasedness unless we are
prepared to accept such solutions. The argument used is that such ”estimates” should
be reported because eventually there may be other estimates of the same parameters
obtained by unbiased methods, and then these can be averaged to obtain better unbiased
estimates.

Other workers obtain truncated estimates. That is, given estimates σ̂2
1, ..., σ̂

2
q , with

say σ̂2
q < 0, the estimates are taken as σ̂2

1, ..., σ̂
2
q−1, 0. Still others revise the model so that

the offending variable is deleted from the model, and new estimates are then obtained of
the remaining variances. If these all turn out to be non-negative, the process stops. If
some new estimate turns negative, then that variance is dropped from the model and a
new set of estimates obtained.

These truncated estimators can no longer be defined as unbiased. Verdooren (1980) in
an interesting review of variance component estimation uses the terms ”permissible” and
”impermissible” to characterize estimators. Permissible estimators are those in which the
solution is guaranteed to fall in the parameter space, that is all estimates of variances are

6



non-negative. Impermissible estimators are those in which there is a probability greater
than 0 that the solution will be negative.

If one insists on permissible estimators, why not then use some method that guaran-
tees this property while at the same time invoking, if possible, other desirable properties
of estimators such as consistency, minimum mean squared error, etc.? Of course unbiased-
ness cannot, in general, be invoked. For example, an algorithm for ML, Henderson (1973),
guarantees a permissible estimator provided convergence occurs. A simple extension of
this method due to Harville (1977), yields permissible estimators by REML. The problem
of permissible estimators is especially acute in multiple trait models. For example, in a
two trait phenotypic model say

yij = µi + e1j

y2j = µ2 + e2j

we need to estimate

V ar

(
e1j

e2j

)
=

(
c11 c12

c12 c22

)
. c11 ≥ 0, c22 ≥ 0, c11c22 ≥ c212.

The last of these criteria insures that the estimated correlation between e1j and e2j falls
in the range -1 to 1. The literature reporting genetic correlation estimates contains many
cases in which the criteria are not met, this in spite of probable lack of reporting of many
other sets of computations with such results. The problem is particularly difficult when
there are more than 2 variates. Now it is not sufficient for all estimates of variances to
be non- negative and all pairs of estimated correlations to fall in the proper range. The
requirement rather is that the estimated variance-covariance matrix be either positive
definite or at worst positive semi-definite. A condition guaranteeing this is that all latent
roots (eigenvalues) be positive for positive definiteness or be non-negative for positive
semidefiteness. Most computing centers have available a good subroutine for computing
eigenvalues. We illustrate with a 3 × 3 matrix in which all correlations are permissible,
but the matrix is negative definite.  3 −3 4

−3 4 4
4 4 6


The eigenvalues for this matrix are (9.563, 6.496, -3.059), proving that the matrix is
negative definite. If this matrix represented an estimated G for use in mixed model
equations, one would add G−1 to an appropriate submatrix, of OLS equations, but

G−1 =

 −.042 −.139 .147
−.011 .126

−.016

 ,
so one would add negative quantities to the diagonal elements, and this would make no
sense. If the purpose of variance-covariance estimation is to use the estimates in setting
up mixed model equations, it is essential that permissible estimators be used.
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Another difficult problem arises when variance estimates are to be used in estimating
h2. For example, in a sire model, an estimate of h2 often used is

ĥ2 = 4 σ̂2
s/(σ̂

2
s + σ̂2

e).

By definition 0 < h2 < 1, the requirement that σ̂2
s > 0 and σ̂2

e > 0 does not insure
that ĥ2 is permissible. For this to be true the permissible range of σ̂2

s/σ̂
2
e is 0 to 3−1. This

would suggest using an estimation method that guarantees that the estimated ratio falls
in the appropriate range.

In the multivariate case a method might be derived along these lines. Let some
translation invariant unbiased estimator be the solution to

Cv̂ = q,

where q is a set of quadratics and Cv is E(q). Then solve these equations subject to a set
of inequalities that forces v̂ to fall in the parameter space, as a minimum, all eigenvalues
≥ 0 where v̂ comprises the elements of the variance-covariance matrix.

8 Method For Singular G

When G is singular we can use a method for EM type REML that is similar to
MIVQUE in Section 11.16. We iterate on α̂′G∗i α̂, and the expectation is trG∗i V ar(α̂).
Under the pretense that G̃ = G and R̃ = R

V ar(α̂) = G̃−GG̃− − C22.

C22 is the lower q2 submatrix of a g-inverse of the coefficient matrix of (5.51), which has
rank, r(X) + r(G). Use a g-inverse with q−rank(G) rows (and cols.) zeroed in the last q
rows (and cols.). Let G− be a g-inverse of G with the same q−rank(G) rows (and cols.)
zeroed as in C22. For ML substitute (GZ′R−1ZG)− for C22.
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Chapter 13
Effects of Selection

C. R. Henderson

1984 - Guelph

1 Introduction

The models and the estimation and prediction methods of the preceding chapters
have not addressed the problem of data arising from a selection program. Note that
the assumption has been that the expected value of every element of u is 0. What if u
represents breeding values of animals that have been produced by a long-time, effective,
selection program? In that case we would expect the breeding values in later generations
to be higher than in the earlier ones. Consequently the expected value of u is not really 0
as assumed in the methods presented earlier. Also it should be noted that, in an additive
genetic model, Aσ2

a is a correct statement of the covariance matrix of breeding values if no
selection has taken place and σ2

a = additive genetic variance in an unrelated, non-inbred,
unselected population. Following selection this no longer is true. Generally variances are
reduced and the covariances are altered. In fact, there can be non-zero covariances for
pairs of unrelated animals. Further, we often assume for one trait that V ar(e) = Iσ2

e .
Following selection this is no longer true. Variances are reduced and non-zero covariances
are generated. Another potentially serious consequence of selection is that previously
uncorrelated elements of u and e become correlated with selection. If we know the new
first and second moments of (y,u) we can then derive BLUE and BLUP for that model.
This is exceedingly difficult for two reasons. First, because selection intensity varies from
one herd to another, a different set of parameters would be needed for each herd, but
usually with too few records for good estimates to be obtained. Second, correlation of u
with e complicates the computations. Fortunately, as we shall see later in this chapter,
computations that ignore selection and then use the parameters existing prior to selection
sometimes result in BLUE and BLUP under the selection model. Unfortunately, com-
parable results have not been obtained for variance and covariance estimation, although
there does seem to be some evidence that MIVQUE with good priors, REML, and ML
may have considerable ability to control bias due to selection, Rothschild et al. (1979).
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2 An Example of Selection

We illustrate some effects of selection and the properties of BLUE, BLUP, and OLS
by a progeny test example. The progeny numbers were distributed as follows

Treatments
Sires 1 2

1 10 500
2 10 100
3 10 0
4 10 0

We assume that the sires were ranked from highest to lowest on their progeny averages in
Period 1. If that were true in repeated sampling and if we assume normal distributions,
one can write the expected first and second moments. Assume unrelated sires, σ2

e = 15,
σ2
s = 1 under a model,

yijk = si + pj + eijk.

With no selection

E



ȳ11

ȳ21

ȳ31

ȳ41

ȳ12

ȳ22


=



p1

p1

p1

p1

p2

p2


, V ar =



2.5 0 0 0 1 0
2.5 0 0 0 1

2.5 0 0 0
2.5 0 0

1.03 0
1.15


.

With ordering of sires according to first records the corresponding moments are

1.628 + p1

.460 + p1

−.460 + p1

−1.628 + p1

.651 + p2

.184 + p2


and



1.229 .614 .395 .262 .492 .246
.901 .590 .395 .246 .360

.901 .614 .158 .236
1.229 .105 .158

.827 .098
.894


.

Further, with no ordering E(s) = 0, V ar(s) = I. With ordering these become
.651
.184
−.184
−.651

 and


.797 .098 .063 .042

.744 .094 .063
.744 .098

.797

 .
These results are derived from Teicheroew (1956), Sarhan and Greenberg (1956), and
Pearson (1903).
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Suppose p1 = 10, p2 = 12. Then in repeated sampling the expected values of the
6 subclass means would be 

11.628 12.651
10.460 12.184
9.540 −−
8.372 −−


Applying BLUE and BLUP, ignoring selection, to these expected data the mixed model
equations are 

40 0 10 10 10 10
600 500 100 0 0

525 0 0 0
125 0 0

25 0
25





p1

p2

s1

s2

s3

s4


=



400.00
7543.90
6441.78
1323.00

95.40
83.72


The solution is [10.000, 12.000, .651, .184, −.184, −.651], thereby demonstrating
unbiasedness of p̂ and ŝ. The reason for this is discussed in Section 13.5.1.

In contrast the OLS solution gives biased estimators and predictors. Forcing
∑
ŝi =

0 as in the BLUP solution we obtain as the solution

[10.000, 11.361, 1.297, .790, −.460,−1.628].

Except for p̂1 these are biased. If OLS is applied to only the data of period 2, so1 − so2 is
an unbiased predictor of s1 − s2. The equations in this case are 600 500 100

500 500 0
100 0 100


 po2
so1
so2

 =

 7543.90
6325.50
1218.40

 .
A solution is [0, 12.651, 12.184]. Then so1 − so2 = .467 = E(s1 − s2) under the selection
model. This result is equivalent to a situation in which the observations on the first period
are not observable and we define selection at that stage as selection on u, in which case
treating u as fixed in the computations leads to unbiased estimators and predictors. Note,
however, that we obtain invariant solutions only for functions that are estimable under a
fixed u model. Consequently p2 is not estimable and we can predict only the difference
between s1 and s2.

3 Conditional Means And Variances

Pearson (1903) derived results for the multivariate normal distribution that are ex-
tremely useful for studying the selection problem. These are the results that were used in
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the example in Section 13.2. We shall employ the notation of Henderson (1975a), similar
to that of Lawley (1943), rather than Pearson’s, which was not in matrix notation. With
no selection [v

′
1 v

′
2] have a multivariate normal distribution with means,

(
µ

′
1 µ

′
2

)
, and V ar

(
v1

v2

)
=

(
C11 C12

C
′
12 C22

)
. (1)

Suppose now in conceptual repeated sampling v2 is selected in such a way that it has
mean = µ2 + k and variance = Cs. Then Pearson’s result is

Es

(
v1

v2

)
=

(
µ1 + C12C

−1
22 k

µ2 + k

)
. (2)

V ars

(
v1

v2

)
=

(
C11 −C12C0C

′
12 C12C

−1
22 Cs

CsC
−1
22 C

′
12 Cs

)
, (3)

where C0 = C−1
22 (C22 − Cs)C

−1
22 . Henderson (1975) used this result to derive BLUP

and BLUE under a selection model with a multivariate normal distribution of (y,u, e)
assumed. Let w be some vector correlated with (y,u). With no selection

E


y
u
e
w

 =


Xβ
0
0
d

 , (4)

V ar


y
u
e
w

 =


V ZG R B
GZ′ G 0 Bu

R 0 R Be

B′ B
′
u B

′
e H

 , (5)

and
V = ZGZ′ + R, B = ZBu + Be.

Now suppose that in repeated sampling w is selected such that E(w) = s 6= d, and
V ar(w) = Hs. Then the conditional moments are as follows.

E

 y
u
w

 =

 Xβ + Bt
But
s

 , (6)

where t = H−1(s− d).

V ar

 y
u
w

 =

 V −BH0B
′

ZG−BH0B
′ BH−1Hs

GZ′ −BH0B
′ G−BuH0B

′
u BuH

−1Hs

HsH
−1B′ HsH

−1B
′
u Hs

 , (7)

where H0 = H−1(H−Hs)H
−1.
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4 BLUE And BLUP Under Selection Model

To find BLUE of K′β and BLUP of u under this conditional model, find linear
functions that minimize diagonals of V ar(K′β) and variance of diagonals of (û − u)
subject to

E(K′βo) = K′β and E(û) = But.

This is accomplished by modifying GLS and mixed model equations as follows.(
X′V−1X X′V−1B
B′V−1X B′V−1B

)(
βo

to

)
=

(
X′V−1y
B′V−1y

)
(8)

BLUP of k′β + m′u is

k′βo + m′βut
o + m′GZ′(y −Xβo −Bto).

Modified mixed model equations are X′R−1X X′R−1‘Z X′R−1Be

Z′R−1X Z′R−1Z + G−1 Z′R−1Be −G−1Bu

B
′
eR
−1X B

′
eR
−1Z−B

′
uG
−1 B

′
eR
−1Be + B

′
uG
−1Bu


 βo

uo

to

 =
(

X′R−1y Z′R−1‘y B
′
eR
−1y

)′
. (9)

BLUP of k′β + m′u is k′βo + m′uo. In equations (8) and (9) we use uo rather than û
because the solution is not always invariant. It is necessary therefore to examine whether
the function is predictable. The sampling and prediction error variances come from a
g-inverse of (8) or (9). Let a g-inverse of the matrix of (8) be(

C11 C12

C
′
12 C22

)
,

then
V ar(K′βo) = K′C11K. (10)

Let a g-inverse of the matrix of (9) be C11 C12 C13

C
′
12 C22 C23

C
′
13 C

′
23 C33

 ,
Then

V ar(K′βo) = K′C11K. (11)

Cov(K′βo, û− u) = K′C12. (12)

V ar(û− u) = C22. (13)

Cov(K′βo, û′) = K′C13B
′

u. (14)

V ar(û) = G−C22 + C23B
′

u + BuC
′

23 −BuH0B
′

u. (15)
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Note that (10), ..., (13) are analogous to the results for the no selection model, but (14)
and (15) are more complicated. The problems with the methods of this section are that
w may be difficult to define and the values of Bu and Be may not be known. Special cases
exist that simplify the problem. This is true particularly if selection is on a subvector
of y, and if estimators and predictors can be found that are invariant to the value of β
associated with the selection functions.

5 Selection On Linear Functions Of y

Suppose that whatever selection has occurred has been a consequence of use of the
record vector or some subvector of y. Let the type of selection be described in terms of
a set of linear functions, say L′y, such that

E(L′y) = L′Xβ + t,

where t 6= 0. t would be 0 if there were no selection.

V ar(L′y) = Hs.

Let us see how this relates to (9).

Bu = GZ′L, Be = RL, H = L′VL.

Substituting these values in (9) we obtain X′R−1X X′R−1Z X′L
Z′R−1X Z′R−1Z + G−1 0

L′X 0 L′VL


 βo

û
θ

 =

 X′R−1y
Z′R−1y

L′y

 . (16)

5.1 Selection with L′X = 0

An important property of (16) is that if L′X = 0, then û is a solution to the mixed
model equations assuming no selection. Thus we have the extremely important result
that whenever L′X = 0, BLUE and BLUP in the selection model can be computed by
using the mixed model equations ignoring selection. Our example in Section 2 can be
formulated as a problem with L′X = 0. Order the observations by sires within periods.
Let

y′ = [ȳ
′

11., ȳ
′

21., ȳ
′

31., ȳ
′

41., ȳ
′

12., ȳ
′

22.].

According to our assumptions of the method of selection

ȳ11. > ȳ21. > ȳ31. > ȳ41..
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Based on this we can write

L′ =

 1
′
10 −1

′

10 0
′
620

0
′
10 1

′
10 −1

′

10 0
′
610

0
′
20 1

′
10 −1

′

10 0
′
600


where

1′10 denotes a row vector of 10 one′s.

0′620 denotes a null row vector with 620 elements, etc.

It is easy to see that L′X = 0, and that explains why we obtain unbiased estimators
and predictors from the solution to the mixed model equations.

Let us consider a much more general selection method that insures that L′X = 0.
Suppose in the first cycle of selection that data to be used in selection comprise a subvector
of y, say ys. We know that Xsβ, consisting of such fixed effects as age, sex and season,
causes confusion in making selection decisions, so we adjust the data for some estimate of
Xsβ, say Xsβ

o so the data for selection become ys−Xsβ
o. Suppose that we then evaluate

the ith candidate for selection by the function a
′
i(ys −Xsβ

o). There are c candidates for
selection and s of them are to be selected. Let us order the highest s of the selection
functions with labels 1 for the highest, 2 for the next highest, etc. Leave the lowest c− s
unordered. Then the animals labelled 1, ..., s are selected, and there may, in addition,
be differential usage of them subsequently depending upon their rank. Now express these
selection criteria as a set of differences, of a′(ys −Xsβ

o),

1− 2, 2− 3, (s− 1)− s, s− (s+ 1), ..., s− c.

Because Xsβ
o is presumably a linear function of y these differences are a set of linear

functions of y, say L′y. Now suppose βo is computed in such a way that E(Xsβ
o) = Xsβ

in a no selection model. (It need not be an unbiased estimator under a selection model,
but if it is, that creates no problem). Then L′X will be null, and the mixed model
equations ignoring selection yield BLUE and BLUP for the selection model. This result
is correct if we know G and R to proportionality. Errors in G̃ and R̃ will result in biases
under a selection model, the magnitude of bias depending upon how seriously G̃ and R̃
depart from G and R and upon the intensity of selection. The result also depends upon
normality. The consequences of departure from this distribution are not known in general,
but depend upon the form of the conditional means.

We can extend this description of selection for succeeding cycles of selection and
still have L′X = 0. The results above depended upon the validity of the Pearson result
and normality. Now with continued selection we no longer have the multivariate normal
distribution, and consequently the Pearson result may not apply exactly. Nevertheless
with traits of relatively low heritability and with a new set of normally distributed errors
for each new set of records, the conditional distribution of Pearson may well be a suitable
approximation.
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6 With Non-Observable Random Factors

The previous section deals with strict truncation selection on a linear function of
records. This is not entirely realistic as there certainly are other factors that influence
the selection decisions, for example, death, infertility, undesirable traits not recorded
as a part of the data vector, y. It even may be the case that the breeder did have
available additional records and used them, but these were not available to the person or
organization attempting to estimate or predict. For these reasons, let us now consider a
different selection model, the functions used for making selection decision now being

a
′

i (y −Xβo) + αi

where αi is a random variable not observable by the person performing estimation and
prediction, but may be known or partially known by the breeder. This leads to a definition
of w as follows

w = L′y + θ.

Cov(y,w′) = B = VL + C, where C = Cov(y,θ′). (17)

Cov(u,w′) = Bu = GZ′L + Cu, where Cu = Cov(u,θ′) (18)

Cov(e,w′) = Be = RL + Ce, where Ce = Cov(e,θ′). (19)

V ar(w) = L′VL + L′C + C′L + Cθ, where Cθ = V ar(θ). (20)

Applying these results to (9) we obtain the modified mixed model equations below) X′R−1X X′R−1Z X′L + X′R−1Ce

Z′R−1X Z′R−1Z + G−1 ZR−1Ce −G−1Cu

L′X + C
′
eR
−1X C

′
eR
−1Z′ + C

′
uG
−1 ψ


 βo

û
θ

 =

 X′R−1y
Z′R−1y
L′y + C

′
eR
−1y

 , (21)

where ψ = L′VL + C
′
eR
−1Ce + C

′
uG
−1Cu + L′C + C′L.

Now if L′X = 0 and if θ is uncorrelated with u and e, these equations reduce
to the regular mixed model equations that ignore selection. Thus the non-observable
variable used in selection causes no difficulty when it is uncorrelated with u and e. If
the correlations are non-zero, one needs the magnitudes of Ce, Cu to obtain BLUE and
BLUP. This could be most difficult to determine. The selection models of Sections 5 and
6 are described in Henderson (1982).
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7 Selection On A Subvector Of y

Many situations exist in which selection has occurred on y1, but y2 is unselected,
where the model is (

y1

y2

)
=

(
X1β
X2β

)
+

(
Z1u
Z2u

)
+

(
e1

e2

)
,

V ar

(
e1

e2

)
=

(
R11 R12

R12 R22

)
.

Presumably y1 are data from earlier generations. Suppose that selection which has oc-
curred can be described as

L′y = (M′ 0)

(
y1

y2

)
.

Then the equations of (16) become X′R−1X X′R−1Z X
′
1M

Z′R−1X Z′R−1Z + G−1 0
M′X1 0 M′V11M


 βo

û
θ

 =

 X′R−1y
Z′R−1y
M′y1

 (22)

Then if M′X1 = 0, unmodified mixed model equations yield unbiased estimators and
predictors. Also if selection is on M′y1 plus a non-observable variable uncorrelated with
u and e and M′X1 = 0, the unmodified equations are appropriate.

Sometimes y1 is not available to the person predicting functions of β and u. Now if
we assume that R12 = 0,

E(y2 |M′y1) = Z2GZ
′

1Mk.

E(u |M′y1) = GZ
′

1Mk,

where

k = (M′V11M)−1t,

t being the deviation of mean of M′y1 from X
′
1β. If we solve for βo and uo in the equations

(23) that regard u as fixed for purposes of computation, then

E[K′βo + T′uo] = K′β + E[T′u |M′y1]

provided that K′β + T′u is estimable under a fixed u model.(
X

′
2R
−1
22 X2 X

′
2R
−1
22 Z2

Z
′
2R
−1
22 X2 Z

′
2R
−1
22 Z2

) (
βo

uo

)
=

(
X

′
2R
−1
22 y2

Z
′
2R
−1
22 y2

)
. (23)
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This of course does not prove that K′βo + T′uo is BLUP of this function under M′y1

selection and utilizing only y2. Let us examine modified mixed model equations regarding
y2 as the data vector and M′y1 = w. We set up equations like (21).

Be = Cov[e2,y
′

1M] = 0 if we assume R12 = 0.

Bu = Cov(u,y
′

1M) = GZ
′

1M.

Then the modified mixed model equations become X
′
2R
−1
22 X2 X

′
2R
−1
22 Z2 0

Z
′
2R
−1
22 X2 Z

′
2R
−1
22 Z2 + G−1 −Z

′

1M

0 −M′Z1 M′Z1GZ
′

1M


 βo

uo

θ

 =

 X
′
2R
−1
22 y2

Z
′
2R
−1
22 y2

0

 . (24)

A sufficient set of conditions for the solution to βo and uo in these equations being equal
to those of (23) is that M′ = I and Z1 be non-singular. In that case if we ”absorb” θ we
obtain the equations of (23).

Now it seems implausible that Z1 be non-singular. In fact, it would usually have
more rows than columns. A more realistic situation is the following. Let ȳ1 be the mean
of smallest subclasses in the ȳ1 vector. Then the model for ȳ1 is

ȳ1 = X̄1β + Z̄1u + e1.

See Section 1.6 for a description of such models. Now suppose selection can be described
as Iȳ1. Then

Be = 0 if R12 = 0, and

Bu = Z̄1.

Then a sufficient condition for GLS using y2 only and computing as though u is fixed
to be BLUP under the selection model and regarding y2 as that data vector is that Z̄1

be non-singular. This might well be the case in some practical situations. This is the
selection model in our sire example.

8 Selection On u

Cases exist in animal breeding in which the data represent observations associated
with u that have been subject to prior selection, but with the data that were used for such
selection not available. Henderson (1975a) described this as L′u selection. If no selection
on the observable y vector has been effected, BLUE and BLUP come from solution to
equations (25). X′R−1X X′R−1Z 0

Z′R−1X Z′R−1Z + G−1 −L
0 −L′ L′GL


 βo

uo

θ

 =

 X′R−1y
Z′R−1y

0

 (25)
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These reduce to (26) by ”absorbing” θ.(
X′R−1X X′R−1Z
Z′R−1X Z′R−1Z + G−1 − L(L′GL)−1L′

)(
βo

uo

)
=

(
X′R−1y
Z′R−1y

)
(26)

The notation uo is used rather than û since the solution may not be unique, in which
case we need to consider functions of uo that are invariant to the solution. It is simple
to prove that K′βo + M′uo is an unbiased predictor of K′β + M′u, where βo and uo are
some solution to (27) and this is an estimable function under a fixed u model(

X′R−1X X′R−1Z
Z′R−1X Z′R−1Z

)(
βo

uo

)
=

(
X′R−1y
Z′R−1y

)
. (27)

A sufficient condition for this to be BLUP is that L = I. The proof comes by substituting
I for L in (26). In sire evaluation L′u selection can be accounted for by proper grouping.
Henderson (1973) gave an example of this for unrelated sires. Quaas and Pollak (1981)
extended this result for related sires. Let G = Aσ2

s . Write the model for progeny as

y = Xh + ZQg + ZS + e,

where h refers to fixed herd-year-season and g to fixed group effects. Then it was shown
that such grouping is equivalent to no grouping, defining L = G−1Q, and then using (25).
We illustrate this method with the following data.

group sire ni yi
1 1 2 10

2 3 12
3 1 7

2 4 2 6
5 3 8

3 6 1 3
7 2 5
8 1 2
9 2 8

A =



1 0 .5 .5 0 .25 .25 0 .125
1 0 0 .5 0 0 .25 0

1 .25 0 .5 .125 0 .25
1 0 .125 .5 0 .0625

1 0 0 .5 0
1 .0625 0 .5

1 0 .03125
1 0

1


.
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Assume a model yijk = µ + gi + sij + eijk. Let σ2
e = 1, σ2

s = 12−1, then G = 12−1A.
The solution to the mixed model equations with µ dropped is

ĝ = (4.8664, 2.8674, 2.9467),

ŝ = (.0946, −.1937, .1930, .0339, −.1350, .1452, −.0346, −.1192, .1816).

The sire evaluations are ĝi + ŝij and these are (4.961, 4.673, 5.059, 2.901, 2.732, 3.092,
2.912, 2.827, 3.128).

Q′ =

 1 1 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 0 0 1 1 1 1

 .
This gives

L′ =

 12 16 12 −8 −8 −8 0 0 0
−8 −8 0 20 20 0 −8 −8 0

0 0 −8 −8 −8 12 16 16 8

 = G−1Q,

and

L′GL =

 40 −16 −8
40 −16

52

 .
Then the equations like (25) give a solution

µo = 2.9014,

so = (2.0597, 1.7714, 2.1581, 0,−.1689, .1905, .0108, −.0739, .2269),

θ = (1.9651, −.0339, .0453).

The sire evaluation is µo + soi and this is the same as when groups were included.

9 Inverse Of Conditional A Matrix

In some applications the base population animals are not a random sample from some
population, but rather have been selected. Consequently the additive genetic variance-
covariance matrix for these animals is not σ2

aI, where σ2
a is the additive genetic variance in

the population from which these animals were were taken. Rather it is Asσ
2
a∗, where σ2

a∗
6= σ2

a in general. If the base population had been a random sample from some population,
the entire A matrix would be (

I A12

A
′
12 A22

)
. (28)
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The inverse of this can be found easily by the method described by Henderson (1976).
Denote this by (

C11 C12

C
′
12 C22

)
. (29)

If the Pearson result holds, the A matrix for this conditional population is(
As AsA12

A
′
12As A22 −A

′
12(I−As)A12

)
(30)

The inverse of this matrix is (
Cs C12

C
′
12 C22

)
, (31)

where Cs = A−1
s −C12A

′

12, (32)

and C12, C22 are the same as in (29)

Note that most of the elements of the inverse of the conditional matrix (31) are the
same as the elements of the inverse of the unconditional matrix (29). Thus the easy
method for A−1 can be used, and the only elements of the unconditional A needed are
those of A12. Of course this method is not appropriate for the situation in which As is
singular. We illustrate with

unconditional A =


1.0 0 .2 .3 .1

1.0 .1 .2 .2
1.1 .3 .5

1.2 .2
1.3

 .

The first 2 animals are selected so that

As =

(
.7 −.4
−.4 .8

)
.

Then by (30) the conditional A is
.7 −.4 .1 .13 −.01

.8 0 .04 .12
1.07 .25 .47

1.117 .151
1.273

 .

The inverse of the unconditional A is
1.103168 .064741 −.136053 −.251947 −.003730

1.062405 .003286 −.170155 −.143513
1.172793 −.191114 −.411712

.977683 −.031349
.945770

 .

13



The inverse of the conditional A is
2.103168 1.064741 −.136053 −.251947 −.003730

1.812405 .003286 −.170155 −.143513
1.172793 −.191114 −.411712

.977683 −.031349
.954770

 .

A−1
s =

(
2.0 1.0
1.0 1.75

)
, C12 =

(
−.136053 −.251947 −.003730
.003286 −.170155 −.143513

)
,

A
′

12 =

 .2 .1
.3 .2
.1 .2

 ,
and

A−1
s −C12A

′

12 =

(
2.103168 1.064741

1.812405

)
,

which checks with the upper 2 × 2 submatrix of the inverse of conditional A.

10 Minimum Variance Linear Unbiased Predictors

In all previous discussions of prediction in both the no selection and the selection
model we have used as our criteria linear and unbiased with minimum variance of the
prediction error. That is, we use a′y as the predictor of k′β + m′u and find a that
minimizes E(a′y − k′β −m′u)2 subject to the restriction that E(a′y) = k′β + E(m′u).
This is a logical criterion for making selection decisions. For other purposes such as
estimating genetic trend one might wish to minimize the variance of the predictor rather
than the variance of the prediction error. Consequently in this section we shall derive a
predictor of k′β + m′u, say a′y, such that E(a′y) = k′β + E(m′u) and has minimum
variance. For this purpose we use the L′y type of selection described in Section 5. Let

E(L′y) = L′Xβ + t, t 6=0.

V ar(L′y) = Hs 6=L′VL.

Then

E(y | L′y) = Xβ + VL(L′VL)−1t ≡ Xβ + VLd.

E(u | L′y) = GZ′L(L′VL)−1t ≡ GZ′Ld.

V ar(y | L′y) = V −VL(L′VL)−1(L′V −Hs)(L
′VL)−1L′V ≡ Vs.

Then we minimize V ar(a′y) subject to E(a′y) = k′β + m′GZ′Ld. For this expectation
to be true it is required that

X′a = k and L′Va = L′ZGm.
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Therefore we solve equations (33) for a. Vs X VL
X′ 0 0
L′V 0 0


 a
θ
φ

 =

 0
k

L′ZGm

 (33)

Let a g-inverse of the matrix of (33) be C11 C12 C13

C
′
12 C22 C23

C
′
13 C

′
23 C33

 . (34)

Then
a′ = k′C

′

12 + m′GZ′LC
′

13.

But it can be shown that a g-inverse of the matrix of (35) gives the same values of
C11,C12,C13. These are subject to L′X = 0,

C11 = V−1 −V−1X(X′V−1X)−X′V−1 − L(L′V1)−1L′.

C12 = V−1X(X′V−1X)−1, C13 = L(L′VL)−1L′.

Consequently we can solve for a in (35), a simpler set of equations than (33). V X VL
X′ 0 0
L′V 0 0


 a
θ
φ

 =

 0
k

L′ZGm

 . (35)

By techniques described in Henderson (1975) it can be shown that

a′y = k′βo + m′GZ′Lto

where βo, to are a solution to (36). X′R−1X X′R−1Z 0
Z′R−1X Z′R−1Z + G−1 0

0 0 L′VL


 βo

û
to

 =

 X′R−1y
Z′R−1y

L′y

 . (36)

Thus βo is a GLS solution ignoring selection, and to = (L′VL)−1L′y. It was proved in
Henderson (1975a) that

V ar(K′βo) = K′(X′V−1X)−K = K′C11K,

Cov(K′βo, t′) = 0, and

V ar(t) = (L′VL)−1Hs(L
′VL)−1.

Thus the variance of the predictor, K′βo + m′û, is

K′C11K + M′GZ′L(L′VL)−1Hs(L
′VL)−1L′ZGM. (37)
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In contrast to BLUP under the L′y (L′X = 0) selection model, minimization of
prediction variance is more difficult than minimization of variance of prediction error
because the former requires writing a specific L matrix, and if the variance of the predictor
is wanted, an estimate of V ar(L′y) after selection is needed.

We illustrate with the following example with phenotypic observations in two gener-
ations under an additively genetic model.

Time
1 2
y11 y24

y12 y25

y13 y26

The model is

yij = ti + aij + eij.

V ar(a) =



1 0 0 .5 .5 0
1 0 0 0 .5

1 0 0 0
1 .25 0

1 0
1


.

This implies that animal 1 is a parent of animals 4 and 5, and animal 2 is a parent of
animal 6. Let V ar(e) = 2I6. Thus h2 = 1/3. We assume that animal 1 was chosen to have
2 progeny because y11 > y12. Animal 2 was chosen to have 1 progeny and animal 3 none
because y12 > y13. An L matrix describing this type of selection and resulting in L′X = 0
is (

1 −1 0 0 0 0
0 1 −1 0 0 0

)
.

Suppose we want to predict

3−1 (−1 − 1 − 1 1 1 1) u.

This would be an estimate of the genetic trend in one generation. The mixed model
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coefficient matrix modified for L′y is

1.5 0 .5 .5 .5 0 0 0 0 0
1.5 0 0 0 .5 .5 .5 0 0

2.1667 0 0 −.6667 −.6667 0 0 0
1.8333 0 0 0 −.6667 0 0

1.5 0 0 0 0 0
1.8333 0 0 0 0

1.8333 0 0 0
1.8333 0 0

6 −3
6



.

The right hand sides are
(

X′R−1y Z′R−1y L′y
)′

. Then solving for functions of y it

is found that BLUP of m′u is

(.05348 .00208 − .05556 .00623 .00623 − .01246)y.

In contrast the predictor with minimum variance is

[ .05556 0 − .05556 0 0 0 ]y.

This is a strange result in that only 2 of the 6 records are used. The variances of these
two predictors are .01921 and .01852 respectively. The difference between these depends
upon Hs relative to L′VL. When Hs = L′VL, the variance is .01852.

As a matter of interest suppose that t is known and we predict using y−Xβ. Then
the BLUP predictor is

(−.02703− .06667− .11111.08108.08108.08108)(y −Xβ)

with variance = .09980. Note that the variance is larger than when Xβ is unknown. This is
a consequence of the result that in both BLUP and in selection index the more information
available the smaller is prediction error variance and the larger is the variance of the
predictor. In fact, with perfect information the variance of (m′û) is equal to V ar(m′u)
and the variance of (m′u−m′û) is 0. The minimum variance predictor is the same when
t is known as when it is unknown. Now we verify that the predictors are unbiased in the
selection model described. By the Pearson result for multivariate normality,

E(ys) =
1

18



12 6
−6 6
−6 −12

2 1
2 1
−1 1


(

d1

d2

)
+



1 0
1 0
1 0
0 1
0 1
0 1


(

t1

t2

)
,
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and

E(us) =
1

18



4 2
−2 2
−2 −4

2 1
2 1
−1 1


(

d1

d2

)
.

It is easy to verify that all of the predictors described have this same expectation. If
t = β were known, a particularly simple unbiased predictor is

3−1 (−1− 1− 1 1 1 1) (y −Xβ).

But the variance of this predictor is very much larger than the others. The variance is
1.7222 when Hs = L′VL.

18



Chapter 14
Restricted Best Linear Prediction

C. R. Henderson

1984 - Guelph

1 Restricted Selection Index

Kempthorne and Nordskog (1959) derived restricted selection index. The model and
design assumed was that the record on the jth trait for the ith animal is

yij = x
′

ijβ + uij + eij.

Suppose there are n animals and t traits. It is assumed that every animal has observations
on all traits. Consequently there are nt records. Further assumptions follow. Let ui and
ei be the vectors of dimension t × l pertaining to the ith animal. Then it was assumed
that

V ar(ui) = G0 for all i = 1, . . . , n,

V ar(ei) = R0 for all i = 1, . . . , n,

Cov(ui, u
′

j) = 0 for all i6=j,

Cov(ei, e
′

j) = 0 for all i6=j,

Cov(ui, e
′

j) = 0 for all i, j.

Further u, e are assumed to have a multivariate normal distribution and β is assumed
known. This is the model for which truncation on selection index for m′ui maximizes the
expectation of the mean of selected m′ui, the selection index being the conditional mean
and thus meeting the criteria for Cochran’s (1951) result given in Section 5.1.

Kempthorne and Nordskog were interested in maximizing improvement in m′ui but
at the same time not altering the expected value of C

′
0ui in the selected individuals, C

′
0

being of dimension sxt and having s linearly independent rows. They proved that such a
restricted selection index is

a′y∗,

where y∗ = the deviations of y from their known means and a is the solution to(
G0 + R0 G0C
C′G0 0

)(
a
θ

)
=

(
G0m

0

)
. (1)
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This is a nice result but it depends upon knowing β and having unrelated animals and
the same information on each candidate for selection. An extension of this to related
animals, to unequal information, and to more general designs including progeny and sib
tests is presented in the next section.

2 Restricted BLUP

We now return to the general mixed model

y = Xβ + Zu + e,

where β is unknown, V ar(u) = G, V ar(e) = R and Cov(u, e′) = 0. We want to predict
k′β +m′u by a′y where a is chosen so that a′y is invariant to β, V ar(a′y−k′β−m′u) is
minimum, and the expected value of C′u given a′y = 0. This is accomplished by solving
mixed model equations modified as in (2) and taking as the prediction k′βo + m′û. X′R−1X X′R−1Z X′R−1ZGC

Z′R−1X Z′R−1Z + G−1 Z′R−1ZGC
C′GZ′R−1X C′GZ′R−1Z C′GZ′R−1ZGC


 βo

û
θ

 =

 X′R−1y
Z′R−1y
C′GZ′R−1y

 . (2)

It is easy to prove that C′û = 0. Premultiply the second equation by C′G and subtract
from this the third equation. This gives C′û = 0.

3 Application

Quaas and Henderson (1977) presented computing algorithms for restricted BLUP
in an additively genetic model and with observations on a set of correlated animals. The
algorithms permit missing data on some or all observations of animals to be evaluated.
Two different algorithms are presented, namely records ordered traits within animals and
records ordered animals within traits. They found that in this model absorption of θ
results in a set of equations with rank less than r + q, the rank of regular mixed model
equations, where r = rank (X) and q = number of elements in u. The linear dependencies
relate to the coefficients of β but not of u. Consequently û is unique, but care needs to
be exercised in solving for βo and in writing K′β + m′u, for K′β must now be estimable
under the augmented mixed model equations.
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Chapter 15
Sampling from finite populations

C. R. Henderson

1984 - Guelph

1 Finite e

The populations from which samples have been drawn have been regarded as infinite
in preceding chapters. Thus if a random sample of n is drawn from such a population
with variance σ2, the variance-covariance matrix of the sample vector is Inσ

2. Suppose in
contrast, the population has only t elements and a random sample of n is drawn. Then
the variance-covariance matrix of the sample is

1 −1/(t− 1)
. . .

−1/(t− 1) 1

 σ2. (1)

If t = n, that is, the sample is the entire population, the variance-covariance matrix is
singular. As an example, suppose that the population of observations on a fixed animal
is a single observation on each day of the week. Then the model is

yi = µ+ ei. (2)

V ar(ei) =


1 −1/6 · · · −1/6
−1/6 1 · · · −1/6

...
...

...
−1/6 −1/6 1

σ2. (3)

Suppose we take n random observations. Then BLUE of µ is

µ̂ = ȳ,

and

V ar(µ̂) =
7− n

6n
σ2,

which equals 0 if n = 7. In general, with a population size, t, and a sample of n,

V ar (µ̂) =
t− n
n(t− 1)

σ2,

1



which goes to σ2/n when t goes to infinity, the latter being the usual result for a sample
of n from an infinite population with V ar = Iσ2.

Suppose now that in this same problem we have a random sample of 3 unrelated
animals with 2 observations on each and wish to estimate µ and to predict a when the
model is

yij = µ+ ai + eij,

V ar(a) = I3,

V ar(e) = 6



1 −1/6 0 0 0 0
−1/6 1 0 0 0 0

0 0 1 −1/6 0 0
0 0 −1/6 1 0 0
0 0 0 0 1 −1/6
0 0 0 0 −1/6 1


.

Then

R−1 =



6 1 0 0 0 0
1 6 0 0 0 0
0 0 6 1 0 0
0 0 1 6 0 0
0 0 0 0 6 1
0 0 0 0 1 6


/35.

The BLUP equations are
1.2 .4 .4 .4
.4 1.4 0 0
.4 0 1.4 0
.4 0 0 1.4



µ̂
a1
a2
a3

 = .2


y..
y1.
y2.
y3.

 .

2 Finite u

We could also have a finite number of breeding values from which a sample is drawn.
If these are unrelated and are drawn at random from a population with t animals

V ar(a) =


1 −1/t

. . .

−1/t 1

 σ2
a. (4)

If q are chosen not at random, we can either regard the resulting elements of a as fixed
or we may choose to say we have a sample representing the entire population. Then

V ar(a) =


1 −1/q

. . .

−1/q 1

 σ2
a∗, (5)
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where σ2
a∗ probably is smaller than σ2

a. Now G is singular, and we need to compute BLUP
by the methods of Section 5.10. We would obtain exactly the same results if we assume
a fixed but with levels that are unpatterned, and we then proceed to biased estimation
as in Chapter 9, regarding the average values of squares and products of elements of a as

P =


1 −1/q

. . .

−1/q 1

 σ2
a∗. (6)

3 Infinite By Finite Interactions

Much controversy has surrounded the problem of an appropriate model for the inter-
actions in a 2 way mixed model. One commonly assumed model is that the interactions
have V ar = I σ2

γ. An alternative model is that the interactions in a row (rows being
random and columns fixed) sum to zero. Then variance of interactions, ordered columns
in rows, is 

B 0 · · · 0
0 B · · · 0
...

...
...

0 0 B

 σ2
γ∗ (7)

where B is c× c with 1’s on the diagonal and −1/(c− 1) on all off- diagonals, where c =
number of columns. We will show in Chapter 17 how with appropriate adjustment of σ2

r

(= variance of rows) we can make them equivalent models. See Section 1.5 for definition
of equivalence of models.

4 Finite By Finite Interactions

Suppose that we have a finite population of r rows and c columns. Then we might as-
sume that the variance-covariance matrix of interactions is the following matrix multiplied
by σ2

γ.

All diagonals = 1.

Covariance between interactions in the same row = −σ2
γ/(c− 1).

Covariance between interactions in the same column = −σ2
γ/(r − 1).

Covariance between interations in neither the same row nor column =
σ2
γ/(r − 1)(c− 1).
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If the sample involves r rows and c columns both regarded as fixed, and there is no assumed
pattern of values of interactions, estimation biased by interactions can be accomplished by
regarding these as pseudo-random variables and using the above ”variances” for elements
of P, the average value of squares and products of interactions. This methodology was
described in Chapter 9.

5 Finite, Factorial, Mixed Models

In previous chapters dealing with infinite populations from which u is drawn at ran-
dom as well as infinite subpopulations from which subvectors ui are drawn the assumption
has been that the expectations of these vectors is null. In the case of a population with
finite levels we shall assume that the sum of all elements of their population = 0. This re-
sults in a variance- covariance matrix with rank ≤ t−1, where t = the number of elements
in the population. This is because every row (and column) of the variance-covariance ma-
trix sums to 0. If the members of a finite population are mutually unrelated (for example,
a set of unrelated sires), the variance-covariance matrix usually has d for diagonal ele-
ments and −d/(t − 1) for all off-diagonal elements. If the population refers to additive
genetic values of a finite set of related animals, the variance-covariance matrix would be
Aσ2

a, but with every row (and column) of A summing to 0 and σ2
a having some value

different from the infinite model value.

With respect to a factorial design with 2 factors with random and finite levels the
following relationship exists. Let γij represent the interaction variables. Then

q1∑
i=1

γij = 0 for all j = 1, . . . , q2,

and
q2∑
j=1

γij = 0 for all i = 1, . . . , q1, (8)

where q1 and q2 are the numbers of levels of the first and second factors in the two
populations.

Similarly for 3 factor interactions, γijk,

q3∑
k=1

γijk = 0 for all i = 1, . . . , q1, j = 1, . . . , q2,

q2∑
j=1

γijk = 0 for all i = 1, . . . , q1, k = 1, . . . , q3, and

q1∑
i=1

γijk = 0 for all j = 1, . . . , q2, k = 1, . . . , q3. (9)
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This concept can be extended to any number of factors. The same principles regarding
interactions can be applied to nesting factors if we visualize nesting as being a factorial
design with planned disconnectedness. For example, let the first factor be sires and the
second dams with 2 sires and 5 dams in the experiment. In terms of a factorial design
the subclass numbers (numbers per litter, eg.) are

Dams
Sires 1 2 3 4 5

1 5 9 8 0 0
2 0 0 0 7 10

If this were a variance component estimation problem, we could estimate σ2
s and σ2

e

but not σ2
d and σ2

sd. We can estimate σ2
d + σ2

sd and this would usually be called σ2
d/s.

6 Covariance Matrices

Consider the model

y = Xβ +
∑
i

Ziui + possible interactions + e. (10)

The ui represent main effects. The ith factor has ti levels in the population. Under the tra-
ditional mixed model for variance components all ti → infinity. In that case V ar(ui) = Iσ2

i

for all i, and all interactions have variance-covariance that are I times a scalar. Further,
all subvectors of ui and those subvectors for interactions are mutually uncorrelated.

Now with possible finite ti

V ar(ui) =


1 −1/(ti − 1)

. . .

−1/(ti − 1) 1

 σ2
i . (11)

This notation denotes one’s for diagonals and all off-diagonal elements = −1/(ti − 1).
Now denote by γgh the interactions between levels of ug and uh. Then there are tgth
interactions in the population and the variance-covariance matrix has the following form,
where i denotes the level of the gth factor and j the level of the hth factor. The diagonals
are V ar(γgh).

All elements ij with ij′ = −V ar(γgh)/(th − 1).

All elements ij with i′j = −V ar(γgh)/(tg − 1).

All elements ij with i′j′ = −V ar(γgh)/(tg − 1)(th − 1). (12)
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i′ denotes not equal to i, etc.

To illustrate suppose we have two levels of a first factor and 3 levels of a second. The
variance-covariance matrix of

γ11
γ12
γ13
γ21
γ22
γ23


=



1 −1/2 −1/2 −1 1/2 1/2
1 −1/2 1/2 −1 1/2

1 1/2 1/2 −1
1 −1/2 −1/2

1 −1/2
1


σ2
γgh

Suppose that tg → infinity. Then the four types of elements of the variance-covariance
matrix would be

[1, −1/(th − 1), 0, 0] V ar(γgh).

This is a model sometimes used for interactions in the two way mixed model with levels
of columns fixed.

Now consider 3 factor interactions, γfgh. Denote by i, j, k the levels of uf , ug, and
uh, respectively. The elements of the variance-covariance matrix except for the scalar,
V ar(γfgh) are as follows.

all diagonals = 1.

ijk with ijk′ = −1/(th − 1).

ijk with ij′k = −1/(tg − 1).

ijk with i′jk = −1/(tf − 1).

ijk with ij′k′ = 1/(tg − 1)(th − 1)

ijk with i′jk′ = 1/(tf − 1)(th − 1)

ijk with i′j′k = 1/(tf − 1)(tg − 1)

ijk with i′j′k′ = 1/(tf − 1)(tg − 1)(th − 1) (13)

To illustrate, a mixed model with ug, uh fixed and tf → infinity, the above become 1,
−1/(th− 1), −1/(tg− 1), 0, k 1/(tg− 1)(th− 1), 0, 0, 0. If levels of all factors→ infinity,
the variance-covariance matrix is IV ar(γfgh).

Finally let us look at 4 factor interactions γefgh with levels of ue, uf , ug, uh denoted
by i, j, k, m, respectively. Except for the scalar V ar(γefgh) the variance-covariance matrix
has elements like the following.

all diagonals = 1.

ijkm with ijkm′ = −1/(th − 1), and

ijkm with ijk′m = −1/(tg − 1), and

etc.
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ijkm with ijk′m′ = 1/(tg − 1)(th − 1), and

ijkm with ij′km′ = 1/(tf − 1)(th − 1)

etc.

ijkm with ij′k′m′ = 1/(tf − 1)(tg − 1)(th − 1) and

ijkm with i′jk′m′ = 1/(te − 1)(tg − 1)(th − 1)

etc.

ijk with i′j′k′m′ = 1/(te − 1)(tf − 1)(tg − 1)(th − 1). (14)

Note that for all interactions the numerator is 1, the denominator is the product of the
t − 1 for subscripts differing, and the sign is plus if the number of differing subscripts is
even, and negative if the number of differing subscripts is odd. This set of rules applies
to any interactions among any number of factors.

7 Estimability and Predictability

Previous chapters have emphasized the importance of consideration of estimability
when X does not have full column rank, and this is usually the case in application. Now
if we apply the same rules given in Chapter 2 for checking estimability and find that an
element of β, eg. µ, is estimable, the resulting estimate can be meaningless in sampling
from finite populations. To illustrate suppose we have a model,

yij = µ+ si + eij.

Suppose that the si represent a random sample of 2 from a finite population of 5 correlated
sires. Now X is a column vector of 1’s and consequently µ is estimable by our usual rules.
It seems obvious, however, that an estimate of µ has no meaning except as we define the
population to which it refers. If we estimate µ by GLS does µ̂ refer to the mean averaged
over the 2 sires in the sample or averaged over the 5 sires in the population? Looking
at the problem in this manner suggests that we have a problem in prediction. Then the
above question can be formulated as two alternatives, namely prediction of µ+ 1

5

∑5
t=1 si

versus prediction of µ + 1
2

∑2
i=1 si, where the second alternative involves summing over

the 2 sires in the sample. Of course we could, if we choose, predict µ+k′s, where k is any
vector with 5 elements and with k′l = l. The variance of µ̂, the GLS estimator or the
solution to µ in mixed model equations, is identical to the variance of error of prediction of
µ+.2

∑5
i=1 si and not equal to the variance of error of prediction of µ+.5

∑2
i=1 si. Let us

illustrate with some data. Suppose there are 20, 5 observations on sires 1, 2 respectively.
Suppose R = 50 I and

G =


4 −1 −1 −1 −1

4 −1 −1 −1
4 −1 −1

4 −1
4

 .
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Then the mixed model coefficient matrix (not including s3,s4,s5) is

1

30

 15 12 3
20 2

11


with inverse

1

9

 36 −21 −6
26 1

26

 .
This gives the solution  µ̂

ŝ1
ŝ2

 =
1

9

 6 3
2 −2
−2 2

( ȳ1
ȳ2

)
.

The variance of error of prediction of µ+ .5(s1 + s2) is

(1 .5 .5) (Inverse matrix) (1 .5 .5)′ = 2.5.

This is not equal to 4, the variance of µ̂ from the upper left diagonal of the inverse.

Now let us set up equations for BLUP including all 5 sires. Since G is now singular
we need to use one of the methods of Section 5.10. The non-symmetric set of equations is

.5 .4 .1 0 0 0
1.5 2.6 −.1 0 0 0

0 −.4 1.4 0 0 0
−.5 −.4 −.1 1. 0 0
−.5 −.4 −.1 0 1. 0
−.5 −.4 −.1 0 0 1.


(
µ̂
ŝ

)
=



.4 .1
1.6 −.1
−.4 .4
−.4 −.1
−.4 −.1
−.4 −.1


(
ȳ1.
ȳ2.

)
.

Post-multiplying the inverse of this coefficient matrix by(
1 0′

0 G

)

we get as the prediction error variance matrix the following

9−1



36 −21 −6 9 9 9
26 1 −9 −9 −9

26 −9 −9 −9
36 −9 −9

36 −9
36


.
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The upper 3×3 submatrix is the same as the inverse when only sires 1 and 2 are included.
The solution is

(
µ̂
ŝ

)
= 9−1



6 3
2 −2
−2 2

0 0
0 0
0 0


(
ȳ1.
ȳ2.

)
.

ŝ3, ŝ4, ŝ5 = 0

as would be expected because these sires are unrelated to the 2 with progeny relative to
the population of 5 sires. The solution to µ̂, ŝ1, ŝ2 are the same as before. The prediction
error variance of µ+ .2

∑
si is

(1 .2 .2 .2 .2 .2) (Inverse matrix) (1 .2 .2 .2 .2 .2)′ = 4,

the value of the upper diagonal element of the inverse. By the same reasoning we find
that ŝj is BLUP of sj − .2

∑5
i=1 si and not of si − .5 (s1 + s2) for i=1,2. Using the former

function with the inverse of the matrix of the second set of equations we obtain for s1
the value, 2.889. This is also the value of the corresponding diagonal. In contrast the
variance of the error of predition of s1 − .5 (s1 + s2) is 1.389. Thus ŝj is the BLUP of
sj − .2

∑5
i=1 si.

The following rules insure that one does not attempt to predict K′β + M′u that is
not predictable.

1. K′β must be estimable in a model in which E(y) = Xβ.

2. Pretend that there are no missing classes or subclasses involving all levels of ui in the
population.

3. Then if K′β+M′u is estimable in such a design with u regarded as fixed, K′β+M′u
is predictable.

Use the rules of Chapter 2 in checking estimability.

For an example suppose we have sire × treatment design with 3 treatments and 2
sires regarded as a random sample from an infinite population of possibly related sires.
Let the model be

yijk = µ+ si + tj + γij + eijk.

µ, tj are fixed

V ar(s) = Iσ2
s .
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Var (γ) when γ are ordered treatments in sires is
B 0 · · · 0
0 B · · · 0
...

...
...

0 0 · · · B

 ,

where

B =

 1 −1/2 −1/2
−1/2 1 −1/2
−1/2 −1/2 1

σ2
γ.

Suppose we have progeny on all 6 sire × treatment combinations except (2,3). This
creates no problem in prediction due to rule 1 above. Now we can predict for example

t1 +
∑
i=1

ci (si + γi1) − t2 −
∑
i=1

di (si + γi2)

where ∑
i

ci =
∑
i

di = 1.

That is, we can predict the difference between treatments 1 and 2 averaged over any sires
in the population, including some not in the sample of 2 sires if we choose to do so. In
fact, as we shall see, BLUE of (t1 − t2) is BLUP of treatment 1 averaged equally over all
sires in the population minus treatment 2 averaged equally over all sires in the population.

Suppose we want to predict the merit of sire 1 versus sire 2. By the rules above,
(s1 − s2) is not predictable, but

s1 +
3∑
j=1

cj (tj + γij) − s2 −
3∑
j=1

dj (tj + γij)

is predictable if
∑
j cj =

∑
j dj = 1. That is, we can predict sire differences only if we

specify treatments, and obviously only treatments 1, 2, 3. We cannot predict unbiasedly,
from the data, sire differences associated with some other treatment or treatments. But
note that even though subclass (2,3) is missing we can still predict s1+t3+γ13−s2−t3−γ23.
In contrast, if sires as well as treatments were fixed, this function could not be estimated
unbiasedly.

8 BLUP When Some ui Are Finite

Calculation of BLUE and BLUP when there are finite levels of random factors must
take into account the fact that there may be singular G. Consider the simple one way
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case with a population of 4 related sires. Suppose

A =


1. −.2 −.3 −.5

1. −.2 −.6
1 .5

1.6

 .
Suppose we have progeny numbers on these sires that are 9, 5, 3, 0. Suppose the model
is

yijk = µ+ si + eij.

V ar(s) = Aσ2
s .

V ar(e) = Iσ2
e .

Then if we wish to include all 4 sires in the mixed model equations we must resort to the
methods of Sect. 5.10 since G is singular. One of those methods is to solve

(
1 0′

0 Aσ2
s

)


17 9 5 3 0
9 9 0 0 0
5 0 5 0 0
3 0 0 3 0
0 0 0 0 0

 σ−2e +


0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1





µ̂
ŝ1
.
.
ŝ4

 =

(
1 0′

0 Aσ2
s

)

y..
y1.
y2.
y3.
0

 /σ2
e . (15)

µ̂ is BLUP of µ +
1

4

∑
i

si.

ŝj is BLUP of sj −
1

4

∑
i

si.

The inverse of the coefficient matrix post-multiplied by(
1 0′

0 Aσ2
s

)

is the variance-covariance matrix of errors of predictions of these functions.

If we had chosen to include only the 3 sires with progeny, the mixed model equations
would be 

17 9 5 3
9 9 0 0
5 0 5 0
3 0 0 3

 σ−2e +


0 0 0 0

0
0
0

 1
−.2
−.3

−.2
1
−.2

−.3.
−.2
1


−1

σ−2s
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µ̂
ŝ1
ŝ2
ŝ3

 =


y..
y1.
y2.
y3.

 σ−2e . (16)

This gives the same solution to µ̂, ŝ1, ŝ2, ŝ3 as the solution to (15), and the inverse of the
coefficient matrix gives the same prediction variances. Even though s4 is not included, µ̂
predicts µ+ 1

4

∑4
i=1si, and ŝj predicts sj − 1

4

∑4
i=1si. ŝ4 can be computed by

−[.5 .6 .5]

 1 −.2 −.3
−.2 1 −.2
−.3 −.2 1


−1 ŝ1

ŝ2
ŝ3

 .

As another example suppose we have a sire by treatment model with an infinite
population of sires. The nij are

1 2
1 0 8
2 9 2
3 6 0

Var (s) = 2I, Var (e) = l0 I,

Var (γ) including missing subclasses is

1 −1 0 0 0 0
1 0 0 0 0

1 −1 0 0
1 0 0

1 −1
1


/2.

If we do not include γ11 and γ32 in the solution the only submatrix of G that is singular
is the 2x2 block pertaining to γ21, γ22. The GLS equations regarding u as fixed are

1

10



8 0 0 0 8 8 0 0 0
11 0 9 2 0 9 2 0

6 6 0 0 0 0 6
15 0 0 9 0 6

10 8 0 2 0
8 0 0 0

9 0 0
2 0

6





ŝ1
ŝ2
ŝ3
t̂1
t̂2
γ̂12
γ̂21
γ̂22
γ̂31


=



y1..
y2..
y3..
y.1.
y.2.
y12.
y21.
y22.
y31.



1

10
(17)
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Then we premultiply the 7th and 8th equations of (17) by(
1 −1
−1 1

)
/2

and add to the diagonal coefficients, (.5, .5, .5, 0, 0, 2, 1, 1, 2). The solution to the
resulting equations is BLUP. If we had included γ12 and γ32, we would premultiply the
last 6 GLS equations (equations for γ) by Var (γ) and then add to the diagonals, (.5,
.5, .5, 0, 0, 1, 1, 1, 1, 1, 1). When all elements of a population are included in a BLUP
solution, an interesting property becomes apparent. The same summing to 0’s occurs
in the BLUP solution as is true in the corresponding elements of the finite populations
described in Section 4.

9 An Easier Computational Method

Finite populations complicate computation of BLUE and BLUP because non-diagonal
and singular G matrices exist. But if the model is that of Section 2, that is, finite
populations of unrelated elements with common variance, computations can be carried
out with diagonal submatrices for G. The resulting û do not always predict the same
functions predicted by using the actual G matrices, but appropriate linear functions of
them do. We illustrate with a simple one way case.

yij = µ+ ai + eij. i = 1, 2, 3.

V ar(a) =

 2 −1 −1
−1 2 −1
−1 −1 2

 ,
V ar(e) = 10I.

ni = (5, 3, 2), yi. = (10, 8, 6).

Using singular G the nonsymmetric mixed model equations are
1. .5 .3 .2
.5 2. −.3 −.2
−.1 −.5 1.6 −.2
−.4 −.5 −.3 1.4



µ̂
â1
â2
â3

 =


2.4
.6
0

−.6

 . (18)

The solution is [2.4768, -.2861, .0899, .1962]. Note that∑
ûi = 0.
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We can obtain the same solution by pretending that V ar(a) = 3I. Then the mixed
model equations are

1 .5 .3 .2
.5 .5 + 3−1 0 0
.3 0 .3 + 3−1 0
.2 0 0 .2 + 3−1



µ̂
â1
â2
â3

 =


2.4
1.0
.8
.6

 (19)

The inverse of (15.19) is different from the inverse of (15.18) post-multiplied by(
1 0′

0 G

)
.

The inverse of (19) does not yield prediction error variances. To obtain prediction error
variances of µ+ ā. and of ai − ā. pre-multiply it by

1

3


3 1 1 1
0 2 −1 −1
0 −1 2 −1
0 −1 −1 2


and post-multiply that product by the transpose of this matrix. This is a consequence of
the fact that the solution to (19) is BLUP of

1

3


3 1 1 1
0 2 −1 −1
0 −1 2 −1
0 −1 −1 2



µ
s1
s2
s3

 .
In most cases use of diagonal G does not result in the same solution as using the true G,
and the inverse never yields directly the prediction error variance-covariance matrix.

Rules for deriving diagonal submatrices of G to use in place of singular submatrices
follow. For main effects say of ui with ti levels substitute for the G submatrix described
in Section 6, Iσ2

∗i, where

σ2
∗i =

ti
ti−1

σ2
i −

∑
j

ti
(ti−1)(tj−1)

σ2
ij +

∑
j,k

ti
(ti−1)(tj−1)(tk−1)

σ2
ijk

−
∑
j,k,m

ti
(ti−1)(tj−1)(tk−1)(tm−1)

σ2
ijkm etc.

for 5 factor, 6 factor interactions. (20)

σ2
i refers to the scalar part of the variance of the ith factor, σ2

ij refers to 2 factor interactions
involving ui, σ

2
ijk refers to 3 factor interactions involving ui, etc. Note that the signs

alternate

σ2
∗ij =

ti tj
(ti−1)(tj−1)

σ2
ij −

∑
k

ti tj
(ti−1)(tj−1)(tk−1)

σ2
ijk

14



+
∑
k,m

ti tj
(ti−1)(tj−1)(tk−1)(tm−1)

σ2
ijkm etc. (21)

σ2
∗ijk =

ti tj tk
(ti−1)(tj−1)(tk−1)

σ2
ijk −

∑
m

ti tj tk
(ti−1)(tj−1)(tk−1)(tm−1)

σ2
ijk + etc. (22)

Higher order interactions for σ2
∗ follow this same pattern with alternating signs. The

sign is positive when the number of factors in the denominator minus the number in the
numerator is even.

It appears superficially that one needs to estimate the different σ2
i , σ

2
ij, σ

2
ijk, etc., and

this is difficult because non-diagonal, singular submatrices of G are involved. But if one
plans to use their diagonal representations, one might as well estimate the σ2

∗ directly by
any of the standard procedures for the conventional mixed model for variance components
estimation. Then if for pedagogical or other reasons one wishes estimates of σ2 rather
than σ2

∗, one can use equations (20), (21), (22) that relate the two to affect the required
linear transformation.

The solution using diagonal G should not be assumed to be the same as would have
been obtained from use of the true G matrix. If we consider predictable functions as
defined in Section 7 and take these same functions of the solution using diagonal G we
do obtain BLUP. Similarly using these functions we can derive prediction error variances
using a g-inverse of the coefficient matrix with diagonal G.

10 Biased Estimation

If we can legitimately assume that there is no expected pattern of values of the levels
of a fixed factor and no expected pattern of values of interactions between levels of fixed
factors, we can pretend that these fixed factors and interactions are populations with finite
levels and proceed to compute biased estimators as though we are computing BLUP of
random variables. Instead of prediction error variance as derived from the g-inverse of
the coefficient matrix we obtain estimated mean squared errors.
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Chapter 16
The One-Way Classification

C. R. Henderson

1984 - Guelph

This and subsequent chapters will illustrate principles of Chapter 1-15 as applied
to specific designs and classification of data. This chapter is concerned with a model,

yij = µ+ ai + eij. (1)

Thus data can be classified with ni observations on the ith class and with the total of
observations in that class = yi.. Now (1) is not really a model until we specify what popu-
lation or populations were sampled and what are the properties of these populations. One
possibility is that in conceptual repeated sampling µ and ai always have the same values,
and the eij are random samples from an infinite population of uncorrelated variables with
mean 0, and common variance, σ2

e . That is, the variance of the population of e is Iσ2
e ,

and the sample vector of n elements has expectation null and variance = Iσ2
e . Note that

Var(eij) is assumed equal to Var(ei′j), i 6= i′.

1 Estimation and Tests For Fixed a

Estimation and tests of hypothesis are simple under this model. The mixed model
equations are OLS equations since Zu does not exist and since V ar(e) = Iσ2

e . They are

1

σ2
e


n. n1 n2 . . .
n1 n1 0 . . .
n2 0 n2 . . .
...

...
...



µo

ao
1

ao
2
...

 =


y..

y1.

y2.
...

 1

σ2
e

. (2)

The X matrix has t + 1 columns, where t = the number of levels of a, but the rank is t.
None of the elements of the model is estimable. We can estimate

µ+
t∑

i=1

kiai,

where ∑
i

ki = 1,

1



or
t∑
i

kiai,

if ∑
i

ki = 0.

For example µ + ai is estimable, ai − ai′ is estimable, and

a1 −
t∑

i=2

kiai,

with
t∑

i=2

ki = 1,

is estimable. The simplest solution to (2) is µo = 0, ao
i = yi.. This solution corresponds

to the following g-inverse. 
0 0 0 . . .
0 n−1

1 0 . . .
0 0 n−1

2 . . .
...

...
...

 .

Let us illustrate with the following example

(n1, n2, n3) = (8, 3, 4),

(y1., y2., y3.) = (49, 16, 13),

y′y = 468.

The OLS equations are

1

σ2
e


15 8 3 4

8 0 0
3 0

4



µo

ao
1

ao
2

ao
3

 =


78
49
16
13

 1

σ2
e

. (3)

A solution is (0, 49/8, 16/3, 13/4). The corresponding g-inverse of the coefficient matrix
is 

0 0 0 0
8−1 0 0

3−1 0
4−1

 σ2
e .

Suppose one wishes to estimate a1 − a2, a1 − a3, a2 − a3. Then from the above solution
these would be 49

8
− 16

3
, 49

8
− 13

4
, 16

3
− 13

4
. The variance-covariance matrix of these estimators

2



is  0 1 −1 0
0 1 0 −1
0 0 1 −1




0 0 0 0
0 8−1 0 0
0 0 3−1 0
0 0 0 4−1




0 0 0
1 1 0
−1 0 1

0 −1 −1

 σ2
e . (4)

We do not know σ2
e but it can be estimated easily by

σ̂2
e = (y′y −

∑
i

y2
i./ni)/(15− 3)

= (468 − 427.708)/12

= 3.36.

Then we can substitute this for σ2
e to obtain estimated sampling variances.

Suppose we want to test the hypothesis that the levels of ai are equal. This can be
expressed as a test that

(
0 1 −1 0
0 1 0 −1

)
µ
a1

a2

a3

 =

(
0
0

)
.

V ar(K′βo) = K′(g − inverse)K =

(
.45833 .125
.125 .375

)
σ2

e

with

inverse =

(
2.4 −.8
−.8 2.9333

)
1

σ2
e

.

K′βo = (.79167 2.875)′.

Then

numerator SS = (.79167 2.875)

(
2.4 −.8

2.9333

)(
.79167
2.875

)
= 22.108.

The same numerator can be computed from

∑
i

y2
i.

ni

− y2
..

n.

= 427.708 − 405.6 = 22.108.

Then the test that ai are equal is 22.108/2
3.36

which is distributed as F2,12 under the null
hypothesis.

3



2 Levels of a Equally Spaced

In some experiments the levels of a (treatments) are chosen to be “equally spaced”.
For example, if treatments are percent protein in the diet, the levels chosen might be 10%,
12%, 14%, 16%, 18%. Suppose we have 5 such treatments with ni = (5,2,1,3,8) and yi. =
(10,7,3,8,33). Let the full model be

yij = µ+ β1xi + β2x
2
i + β3x

3
i + β4x

4
i + eij (5)

where xi = (1,2,3,4,5). With Var(e) = Iσ2 the OLS equations under the full model are


19 64 270 1240 5886

270 1240 5886 28, 384
5886 28, 384 138, 150

138, 150 676, 600
3, 328, 686





µ̂

β̂1

β̂2

β̂3

β̂4

 =


61

230
1018
4784

23, 038

 . (6)

The solution is [-4.20833, 9.60069, -3.95660, .58681, -.02257]. The reduction in SS is
210.958 which is exactly the same as

∑
i y

2
i./ni. A common set of tests is the following.

β1 = 0 assuming β2, β3, β4 non-existent.

β2 = 0 assuming β3, β4 non-existent.

β3 = 0 assuming β4 non-existent.

β4 = 0.

This can be done by computing the following reductions.

1. Red (full model).

2. Red (µ, β1, β2, β3).

3. Red (µ, β1, β2).

4. Red (µ, β1).

5. Red (µ).

Then the numerators for tests above are reductions 4-5, 3-4, 2-3, 1-2 respectively.

Red (2) is obtained by dropping the last equation of (6). This gives the solution
(-3.2507, 7.7707, -2.8325, .3147) with reduction = 210.952. The other reductions by
successive dropping of an equation are 207.011, 206.896, 195.842. This leads to mean

4



squares each with 1 df.

Linear 11.054
Quadratic .115
Cubic 3.941
Quartic .006

The sum of these is equal to the reduction under the full model minus the reduction due
to µ alone.

3 Biased Estimation of µ + ai

Now we consider biased estimation under the assumption that values of a are un-
patterned. Using the same data as in the previous section we assume for purposes of
illustration that V ar(e) = 5

6
I, and that the average values of squares and products of the

deviations of a from a are

1

8


4 −1 −1 −1 −1

4 −1 −1 −1
4 −1 −1

4 −1
4

 . (7)

Then the equations for minimum mean squared error estimation are

22.8 6.0 2.4 1.2 3.6 9.6
.9 4.0 −.3 −.15 −.45 −1.2

−1.35 −.75 2.2 −.15 −.45 −1.2
−2.1 −.75 −.3 1.6 −.45 −1.2
−.6 −.75 −.3 −.15 2.8 −1.2
3.15 −.75 −.3 −.15 −.45 5.8


(βo) =



73.2
−1.65
−3.9
−6.9
−3.15

15.6


. (8)

The solution is (3.072, -.847, .257, -.031, -.281, .902). Note that∑
i

âi = 0.

The estimates of differences between ai are

2 3 4 5
1 -1.103 -.816 -.566 -1.749
2 .288 .538 -.645
3 .250 -.933
4 -1.183

5



Contrast these with the corresponding BLUE. These are

2 3 4 5
1 -1.5 -1.0 -.667 -2.125
2 .5 .833 -.625
3 .333 -1.125
4 -1.458

Generally the absolute differences are larger for BLUE.

The mean squared error of these differences, assuming that σ2
e and products of devi-

ations of a are correct, are obtained from a g-inverse post-multiplied by

1 0 0 0 0 0
0 4 −1 −1 −1 −1
0 −1 4 −1 −1 −1
0 −1 −1 4 −1 −1
0 −1 −1 −1 4 −1
0 −1 −1 −1 −1 4


.

These are

2 3 4 5
1 .388 .513 .326 .222
2 .613 .444 .352
3 .562 .480
4 .287

The corresponding values for BLUE are

2 3 4 5
1 .7 1.2 .533 .325
2 1.5 .833 .625
3 1.333 1.125
4 .458

If the priors used are really correct, the MSE for biased estimators of differences are
considerably smaller than BLUE.

The same biased estimators can be obtained by use of a diagonal P, namely .625I,
where

.625 =
5

5− 1
(.5).

This gives the same solution vector, but the inverse elements are different. However, mean
squared errors of estimable functions such as the âi − âj and µ̂+ a yield the same results
when applied to the inverse.
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4 Model with Linear Trend of Fixed Levels of a

Assume now the same data as section 2 and that the model is

yij = µ+ βxi + ai + eij (9)

where xi = (1,2,3,4,5). Suppose that the levels of a are assumed to have no pattern and
we use a prior value on their squares and products =

.2 −.05
. . .

−.05 2

 .

Assume as before Var(e) = 5
6

I. Then the equations to solve are

22.8 76.8 6. 2.4 1.2 3.6 9.6
76.8 324 6 4.8 3.6 14.4 48
.36 −2.34 2.2 −.12 −.06 −.18 −.48
−.54 −2.64 −.3 1.48 −.06 −.18 −.48
−.84 −2.94 −.3 −.12 1.24 −.18 −.48
−.24 −.24 −.3 −.12 −.06 1.72 −.48
1.26 8.16 −.3 −.12 −.06 −.18 2.92





µ̂

β̂
â1

â2

â3

â4

â5


=



73.2
276
−.66
−1.56
−2.76
−1.26

6.24


. (10)

The solution is [1.841, .400, -.145, .322, -.010, -.367, .200]. Note that∑
i

âi = 0.

We need to observe precautions in interpreting the solution. β is not estimable and neither
is µ+ ai nor ai − ai′ .

We can only estimate treatment means associated with the particular level of xi in the
experiment. Thus we can estimate µ+ ai + xiβ where xi = 1,2,3,4,5 for the 5 treatments
respectively. The biased estimates of treatment means are

1. 1.841 + .400 - .145 = 2.096

2. 1.841 + .800 + .322 = 2.963

3. 1.841 + 1.200 - .010 = 3.031

4. 1.841 + 1.600 - .367 = 3.074

5. 1.841 + 2.000 + .200 = 4.041

The corresponding BLUE are the treatment means, (2.0, 3.5, 3.0, 2.667, 4.125).

If the true ratio of squares and products of ai to σ2
e are as assumed above, the biased

estimators have minimum mean squared error. Note that E(µ̂+ âi + xiβ̂) for the biased
estimator is µ+ xiβ+ some function of a (not equal to ai). The BLUE estimator has, of
course, expectation, µ+ xiβ + ai, that is, it is unbiased.

7



5 The Usual One Way Covariate Model

If, in contrast to xi being constant for every observation on the ith treatment as in
Section 4, we have the more traditional covariate model,

yij = µ+ βxij + ai + eij, (11)

we can then estimate µ+ai unbiasedly as well as ai−ai′ . Again, however, if we think the
ai are unpatterned and we have some good prior value of their products, we can obtain
smaller mean squared errors by using the biased method.

Now we need to consider the meaning of an estimator of µ + ai. This really is an
estimator of treatment mean in hypothetical repeated sampling in which xi. = 0. What if
the range of the xij is 5 to 21 in the sample? Can we infer from this that the the response
to levels of x is that same linear function for a range of xij as low as 0? Strictly speaking
we can draw inferences only for the values of x in the experiment. With this in mind
we should really estimate µ + ai + kβ, where k is some value in the range of x’s in the
experiment. With regard to treatment differences, ai−ai′ , can be regarded as an estimate
of (µ+ ai + kβ)− (µ+ ai′ + kβ), where k is in the range of the x’s of the experiment.

6 Nonhomogenous Regressions

A still different covariate model is

yij = µ+ βixij + ai + eij.

Note that in this model β is different from treatment to treatment. According to the rules
for estimability µ+ ai, ai − ai′ , and βi are all estimable. However, it is now obvious that
ai− ai′ has no practical meaning as an estimate of treatment difference. We must specify
what levels of x we assume to be present for each treatment. In terms of a treatment
mean these are

µ+ ai + kiβi

and
µ+ aj + kjβj

and the difference is
ai + kiβi − aj − kjβj.

Suppose ki = kj = k. Then the treatment difference is

ai − aj + k(βi − βj),

and this is not invariant to the choice of k when βi 6= βj. In contrast when all βi = β, the
treatment difference is invariant to the choice of k.

Let us illustrate with two treatments.

8



Treatment ni yi. xi.
∑

j x
2
ij

∑
j xijyij

1 8 38 36 220 219
2 5 43 25 135 208

This gives least squares equations


8 0 36 0

5 0 25
220 0

135



µ̂+ t̂1
µ̂+ t̂2
β̂1

β̂2

 =


38
43

219
208

 .

The solution is (1.0259, 12.1, .8276, -.7). Then the estimated difference, treatment 1
minus treatment 2 for various values for x, the same for each treatment, are as follows

x Estimated Difference
0 -11.07
2 -8.02
4 -4.96
6 -1.91
8 1.15
10 4.20
12 7.26

It is obvious from this example that treatment differences are very sensitive to the average
value of x.

7 The Usual One Way Random Model

Next we consider a model

y = µ+ ai + eij.

V ar(a) = Iσ2
a,

V ar(e) = Iσ2
e ,

Cov(a, e′) = 0.

In this case it is assumed that the levels of a in the sample are a random sample from an
infinite population with var Iσ2

a, and similarly for the sample of e. The experiment may
have been conducted to do one of several things, estimate µ, predict a, or to estimate σ2

a

and σ2
e . We illustrate these with the following data.

9



Levels of a ni yi.

1 5 10
2 2 7
3 1 3
4 3 8
5 8 33

Let us estimate µ and predict a under the assumption that σ2
e/σ

2
a = 10. Then we

need to solve these equations.

19 5 2 1 3 8
15 0 0 0 0

12 0 0 0
11 0 0

13 0
18





µ̂
â1

â2

â3

â4

â5


=



61
10
7
3
8

33


. (12)

The solution is [3.137, -.379, .061, -.012, -.108, .439]. Note that
∑
âi = 0. This could have

been anticipated by noting that the sum of the last 4 equations minus the first equation
gives

10
∑

âi = 0.

The inverse of the coefficient matrix is

.0790 −.0263 −.0132 −.0072 −.0182 −.0351
.0754 .0044 .0024 .0061 .0117

.0855 .0012 .0030 .0059
.0916 .0017 .0032

.0811 .0081
.0712


. (13)

This matrix premultiplied by (0 1 1 1 1 1) equals (-1 1 1 1 1 1)(σ2
a/σ

2
e). This is always a

check on the inverse of the coefficient matrix in a model of this kind. From the inverse

V ar(µ̂) = .0790 σ2
e ,

V ar(â1 − a1) = .0754 σ2
e .

µ̂ is BLUP of µ + the mean of all a in the infinite population. Similarly âi is BLUP of ai

minus the mean of all ai in the infinite population.

Let us estimate σ2
a by Method 1. For this we need

∑
i y

2
i./ni and y2

../n. and their expec-
tations. These are 210.9583 and 195.8421 with expectations, 19σ2

a +5σ2
e and 5.4211σ2

a +σ2
e

respectively ignoring 19 µ2 in both.

σ̂2
e = (y′y − 210.9583)/(19− 5).

10



Suppose this is 2.8. Then σ̂2
a = .288.

Let us next compute an approximate MIVQUE estimate using the prior σ2
e/σ

2
a = 10,

the ratio used in the BLUP solution. We shall use σ̂2
e = 2.8 from the least squares

residual rather than a MIVQUE estimate. Then we need to compute â′â = .35209 and
its expectation. The expectation is trV ar(â). But V ar(â) = CaV ar(r)C′a, where Ca is
the last 5 rows of the inverse of the mixed model equations (12), and r is the vector of
right hand sides.

V ar(r) =



5 2 1 3 8
5 0 0 0 0
0 2 0 0 0
0 0 1 0 0
0 0 0 3 0
0 0 0 0 8





5 2 1 3 8
5 0 0 0 0
0 2 0 0 0
0 0 1 0 0
0 0 0 3 0
0 0 0 0 8



′

σ2
a +



19 5 2 1 3 8
5 0 0 0 0

2 0 0 0
1 0 0

3 0
8


σ2

e .

This gives
E(â′â) = .27163 σ2

a + .06802 σ2
e ,

and using σ̂2
e = 2.8, we obtain σ̂2

a = .595.

8 Finite Levels of a

Suppose now that the five ai in the sample of our example of Section 7 comprise all
of the elements of the population and that they are unrelated. Then

V ar(a) =


1 −.25

. . .

−.25 1

 σ2
a .

Let us assume that σ2
e/σ

2
a = 12.5. Then the mixed model equations are the OLS equations

premultiplied by 

1 0 0 0 0 0
.08 −.02 −.02 −.02 −.02

.08 −.02 −.02 −.02
.08 −.02 −.02

.08 −.02
.08


. (14)
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This gives the same solution as that to (11). This is because σ2
a of the infinite model is 5

4

times σ2
a of the finite model. See Section 15.9. Now µ̂ is a predictor of

µ+
1

5

∑
i

ai

and âj is a predictor of

aj −
1

5

∑
i

ai.

Let us find the Method 1 estimate of σ2
a in the finite model. Again we compute

∑
i y

2
i./ni

and y2
../n.. Then the coefficient of σ2

e in each of these is the same as in the infinite model,
that is 5 and 1 respectively. For the coefficients of σ2

a we need the contribution of σ2
a to

V ar(rhs). This is 

5 2 1 3 8
5 0 0 0 0
0 2 0 0 0
0 0 1 0 0
0 0 0 3 0
0 0 0 0 8




1 −1

4
. . .

−1
4

1

 (left matrix)′

=



38.5 7.5 −4.5 −3.5 −3.0 42.
25.0 −2.5 −1.25 −3.75 −10.

4.0 −.5 −1.5 −4.
1. −.75 −2.

9. −6.
64.


. (15)

Then the coefficient of σ2
a in

∑
i y

2
i./ni is tr[dg(5, 2, 1, 3, 8)]−1 times the lower 5×5 submatrix

of (15) = 19.0. The coefficient of σ2
a in y2

../n. = 38.5/19 = 2.0263. Thus we need only
the diagonals of (15). Assuming again that σ2

e = 2.8, we find σ̂2
a = .231. Note that in

the infinite model σ̂2
a = .288 and that 5

4
(.231) = .288 except for rounding error. This

demonstrates that we could estimate σ2
a as though we had an infinite model and estimate

µ and predict a using σ̂2
a/σ̂

2
e in mixed model equations for the infinite model. Remember

that the resulting inverse does not yield directly V ar(µ̂) and V ar(â − a). For this pre-
and post-multiply the inverse by

1

5



5 1 1 1 1 1
0 4 −1 −1 −1 −1
0 −1 4 −1 −1 −1
0 −1 −1 4 −1 −1
0 −1 −1 −1 4 −1
0 −1 −1 −1 −1 4


.

This is in accord with the idea that in the finite model µ̂ is BLUP of µ + a. and âi is
BLUP of ai − a. .
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9 One Way Random and Related Sires

We illustrate the use of the numerator relationship matrix in evaluating sires in a
simple one way model,

yij = µ+ si + eij.

V ar(s) = Aσ2
s ,

V ar(e) = Iσ2
e ,

Cov(s, e′) = 0,

σ2
e/σ

2
s = 10.

Then mixed model equations for estimation of µ and prediction of s are


n. n1. n2. . . .
n1. n1. 0 . . .
n2. 0
...

...

+


0 0 0 . . .
0 A−1 σ2

e/σ
2
s

0
...





µ̂
ŝ1

ŝ2
...

 = (y.. y1. y2. . . . )′ . (16)

We illustrate with the numerical example of section 7 but now with

A =


1 0 .5 .5 0

1. 0 0 .5
1. .25 0

1 0
1

 .

The resulting mixed model equations are

19 5 2 1 3 8
65/3 0 −20/3 −20/3 0

46/3 0 0 −20/3
43/3 0 0

49/3 0
64/3





µ̂
s1

s2

s3

s4

s5


=



61
10
7
3
8

33


. (17)

The solution is (3.163, -.410, .232, -.202, -.259, .433). Note that
∑

i ŝi 6= 0 in contrast to
the case in which A = I. Unbiased estimators of σ2

e and σ2
s can be obtained by computing

Method 1 type quadratics, that is

y′y −
∑

i

y2
i./ni

13



and ∑
i

y2
i./ni − C.F.

However, the expectations must take into account the fact that V ar(s) 6= Iσ2
s , but rather

Aσ2
s . In a non-inbred population

E(y′y) = n.(σ
2
s + σ2

e).

For an inbred population the expectation is∑
i

niaiiσ
2
a + n.σ

2
e ,

where aii is the ith diagonal element of A. The coefficients of σ2
e in

∑
y2

i./ni and y2
../n. are

the same as in an unrelated sample of sires. The coefficients of σ2
s require the diagonals

of V ar(rhs). For our example, these coefficients are

5 2 1 3 8
5 0 0 0 0
0 2 0 0 0
0 0 1 0 0
0 0 0 3 0
0 0 0 0 8


A (left matrix)′

=



140.5 35. 12. 4.25 17.25 72.
25. 0 2.5 7.5 0

4. 0 0 8.
1. .75 0

9. 0
64.


. (18)

Then the coefficient of σ2
a in

∑
i y

2
i./ni is tr(dg(0, 5−1, 2−1, 1, 3−1, 8−1)) times the matrix

in (18) = 19. The coefficient of σ2
a in y2

../n. = 140.5/19 = 7.395.

If we wanted an approximate MIVQUE we could compute rather than

∑
i

y2
1.

ni

− y2
..

n.

of Method 1, the quadratic,
û′A−1û = .3602.

The expectation of this is

tr(A−1 V ar(ŝ)).
V ar(ŝ) = Cs V ar(rhs) C′s.

14



Cs is the last 5 rows of the inverse of the mixed model coefficient matrix.

V ar(rhs) = Matrix (18) σ2
s + (OLS coefficient matrix) σ2

e .

Then

V ar(s) =


.0788 −.0527 .0443 .0526 −.0836

.0425 −.0303 −.0420 .0561
.0285 .0283 −.0487

.0544 −.0671
.1014

 σ2
s +


.01284 −.00774 .00603 .00535 −.01006

.00982 −.00516 −.00677 .00599
.00731 .00159 −.00675

.01133 −.00883
.01462

 σ2
e .

ŝ′A−1ŝ = .36018, with expectation .05568 σ2
e + .22977 σ2

s . σ̂2
e for approximate MIVQUE

can be computed from
y′y −

∑
i

y2
i./ni..

15



Chapter 17
The Two Way Classification

C. R. Henderson

1984 - Guelph

This chapter is concerned with a linear model in which

yijk = µ+ ai + bj + γij + eijk. (1)

For this to be a model we need to specify whether a is fixed or random, b is fixed or
random, and accordingly whether γ is fixed or random. In the case of random subvectors
we need to specify the variance-covariance matrix, and that is determined in part by
whether the vector sampled is finite or infinite.

1 The Two Way Fixed Model

We shall be concerned first with a model in which a and b are both fixed, and as a
consequence so is γ. For convenience let

µij = µ+ ai + bj + γij. (2)

Then it is easy to prove that the only estimable linear functions are linear functions of
µij that are associated with filled subclasses (nij > 0). Further notations and definitions
are:

Row mean = µ̄i.. (3)

Its estimate is sometimes called a least squares mean, but I agree with Searle et al. (1980)
that this is not a desirable name.

Column mean = µ̄.j. (4)

Row effect = µ̄i. − µ̄... (5)

Column effect = µ̄.j − µ̄... (6)

General mean = µ̄... (7)

Interaction effect = µij − µ̄i..− µ̄.j + µ̄... (8)

From the fact that only µij for filled subclasses are estimable, missing subclasses result in
the parameters of (17.3) . . . (17.8) being non-estimable.

µ̄i′. is not estimable if any ni′j = 0.
µ̄.j′ is not estimable if any nij′ = 0.
µ̄.. is not estimable if one or more nij = 0.
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All row effects, columns effects, and interaction effects are non-estimable if one or more
nij = 0. Due to these non-estimability considerations, mimicking of either the balanced
or the filled subclass estimation and tests of hypotheses wanted by many experimenters
present obvious difficulties. We shall present biased methods that are frequently used and
a newer method with smaller mean squared error of estimation given certain assumptions.

2 BLUE For The Filled Subclass Case

Assuming that V ar(e) = Iσ2
e , it is easy to prove that µ̂ij = ȳij.. Then it follows that

BLUE of the ith row mean in the filled subclass case is

1

c

∑c

j=1
ȳij.. (9)

BLUE of jth column mean is
1

r

∑r

i=1
ȳij.. (10)

r = number of rows, and

c = number of columns.

BLUE of ith row effect is
1

c

∑
j
ȳij. −

1

rc

∑
i

∑
j
ȳij.. (11)

Thus BLUE of any of (17.3), . . . , (17.8) is that same function of µ̂ij, where µ̂ij = ȳij..

The variances of any of these functions are simple to compute. Any of them can be
expressed as

∑
i

∑
j kij µij with BLUE =∑

i

∑
j
kij ȳij.. (12)

The variance of this is
σ2
e

∑
i

∑
j
k2
ij/nij. (13)

The covariance between BLUE’s of linear functions,∑
i

∑
j
kij ȳij. and

∑
i

∑
j
tij ȳij.′

is

σ2
e

∑
i

∑
j
kijtij/nij. (14)

The numbers required for tests of hypotheses are (17.13) and (17.14) and the associated
BLUE’s. Consider a standard ANOVA, that is, mean squares for rows, columns, R × C.
The R× C sum of squares with (r − 1)(c− 1) d.f. can be computed by

∑
i

∑
j

y2
ij.

nij
− Reduction under model with no interaction. (15)

2



The last term of (17.15) can be obtained by a solution to(
Di Nij

Nij Dj

)(
ao

bo

)
=

(
yi
yj

)
. (16)

Di = diag (n1., n2., . . . , nr.).

Dj = diag (n.1, n.2, . . . , n.c).

Nij = matrix of all nij.

y
′

i = (y1.., . . . , yr..).

y
′

j = (y.1., . . . , y.c.).

Then the reduction is

(ao)′ yi + (bo)′yj. (17)

Sums of squares for rows and columns can be computed conveniently by the method of
weighted squares of means, due to Yates (1934). For rows compute

αi =
1

c

∑
j
ȳij. (i = 1, . . . , r), and (18)

k−1
i =

1

c2
∑

j

1

nij
.

Then the row S.S. with r − 1 d.f. is∑
i
ki α

2
i − (

∑
i
kiαi)

2/
∑

i
ki. (19)

The column S.S. with c − 1 d.f. is computed in a similar manner. The “error” mean
square for tests of these mean squares is

(y′y −
∑

i

∑
j
y2
ij./nij)/(n.. − rc). (20)

An obvious limitation of the weighted squares of means for testing rows is that the test
refers to equal weighting of subclasses across columns. This may not be what is desired
by the experimenter.

An illustration of a filled subclass 2 way fixed model is a breed by treatment design
with the following nij and yij..

Treatments
nij yij.

Breeds 1 2 3 1 2 3
1 5 2 1 68 29 19
2 4 2 2 55 30 36
3 5 1 4 61 13 61
4 4 5 4 47 65 75

3



∑
i

∑
j
y2
ij./nij = 8207.5.

Let us test the hypothesis that interaction is negligible. The reduction under a model
with no interaction can be obtained from a solution to equation (17.21).

8 0 0 0 5 2
8 0 0 4 2

10 0 5 1
13 4 5

18 0
10





b1
b2
b3
b4
t1
t2


=



116
121
135
187
231
137


. (21)

The solution is (18.5742, 18.5893, 16.3495, 17.4624, -4.8792, -4.0988)′. The reduction is
8187.933. Then R×C S.S. = 8207.5 - 8187.923 = 19.567. S. S. for rows can be formulated
as a test of the hypothesis

K′µ =

 1 1 1 0 0 0 0 0 0 −1 −1 −1
0 0 0 1 1 1 0 0 0 −1 −1 −1
0 0 0 0 0 0 1 1 1 −1 −1 −1



µ11
...
µ43

 = 0.

The µ̂ij are (13.6, 14.5, 19.0, 13.75, 15.0, 18.0, 12.2, 13.0, 15.25, 11.75, 13.0, 18.75).

K′µ̂ = (3.6 3.25 − 3.05)′.

V ar(K′µ̂) = K′ [diag (5 2 . . . 4)]−1 Kσ2
e

=

 2.4 .7 .7
1.95 .7

2.15

 σ2
e .

σ−2
e (K′µ̂)′ [V ar(K′µ̂)]−1 K′µ̂ = 20.54 = SS for rows.

SS for cols. is a test of

K′µ =

(
1 0 −1 1 0 −1 1 0 −1 1 0 −1
0 1 −1 0 1 −1 0 1 −1 0 1 −1

)
µ = 0.

K′µ̂ =

(
−19.7
−15.5

)
.

V ar(K′µ̂) =

(
2.9 2.0

4.2

)
σ2
e .

σ−2
e (K′µ̂)′ [V ar(K′µ̂)]−1 K′µ̂ = 135.12 = SS for Cols.

Next we illustrate weighted squares of means to obtain these same results. Sums of
squares for rows uses the values below
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αi ki
1 15.7 5.29412
2 15.5833 7.2
3 13.4833 6.20690
4 14.5 12.85714

∑
i
ki α

2
i = 6885.014.

(
∑

i
ki αi)

2/
∑

i
ki = 6864.478.

Diff. = 20.54 as before.

Sums of squares for columns uses the values below

bj kj
1 12.825 17.7778
2 13.875 7.2727
3 17.75 8.

∑
kj b

2
j = 6844.712.

(
∑

kj)
2/
∑

kj = 6709.590.

Diff. = 135.12 as before.

Another interesting method for obtaining estimates and tests involves setting up least
squares equations using Lagrange multipliers to impose the following restrictions∑

i
γij = 0 for i = 1, . . . , r.∑

i
γij = 0 for j = 1, . . . , c.

µo = 0

A solution is

b′ = (0, −14, −266, −144)/120.

t′ = (1645, 1771, 2236)/120.

γ ′ = (−13, −31, 44, 19, 43, −62, 85, 55, −140, −91, −67, 158)/120.

Using these values, µ̂ij are the ȳij., and the reduction in SS is∑
i

∑
j
y2
ij./nij. = 8207.5.
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Next the SS for rows is this reduction minus the reduction when bo is dropped from
the equations restricted as before. A solution in that case is

t′ = (12.8133, 14.1223, 17.3099).

γ ′ = (.4509, −.4619, .0110, .4358, −.1241, −.3117,

− .0897, 1.4953, −1.4055, −.7970, .9093, 1.7063),

and the reduction is 8186.960. The row sums of squares is

8207.5− 8186.960 = 20.54 as before.

Now drop to from the equations. A solution is

b̂′ = (13.9002, 15.0562, 13.5475, 14.4887).

γ̂ ′ = (.9648, .9390, −1.9039, .2751, .2830, −.5581,

− .0825, .1309, −.0485, −1.1574, −1.3530, 2.5104),

and the reduction is 8072.377, giving the column sums of squares as

8207.5− 8072.377 = 135.12 as before.

An interesting way to obtain estimates under the sum to 0 restrictions in γ is to solve

X̄
′

0 X̄0

(
bo

to

)
= X̄0ȳ,

where X̄0 is the submatrix of X̄ referring to b, t only, and ȳ is a vector of subclass means.
These equations are

3 0 0 0 1 1 1
3 0 0 1 1 1

3 0 1 1 1
3 1 1 1

4 0 0
4 0

4





b1
b2
b3
b4
t1
t2
t3


=



47.1
46.75
40.45
43.5
51.3
55.5
71.0


. (22)

A solution is

b′ = (0, −14, −266, −144)/120,

t′ = (1645, 1771, 2236)/120.

This is the same as in the restricted least squares solution. Then

γ̂ij = ȳij. − boi − toj ,

which gives the same result as before. More will be said about these alternative methods
in the missing subclass case.
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3 The Fixed, Missing Subclass Case

When one or more subclasses is missing, the estimates and tests described in Section 2
cannot be effected. What should be done in this case? There appears to be no agreement
among statisticians. It is of course true that any linear functions of µij in which nij > 0
can be estimated by BLUE and can be tested, but these may not be of any particular
interest to the researcher. One method sometimes used, and this is the basis of a SAS
Type 4 analysis, is to select a subset of subclasses, all filled, and then to do a weighted
squares of means analysis on this subset. For example, suppose that in a 3 × 4 design,
subclass (1,2) is missing. Then one could discard all data from the second column, leaving
a 3×3 design with filled subclasses. This would mean that rows are compared by averaging
over columns 1,3,4 and only columns 1,3,4 are compared, these averaged over the 3 rows.
One could also discard the first row leaving a 2 × 4 design. The columns are compared
by averaging over only rows 2 and 3, and only rows 2 and 3 are compared, averaging over
all 4 columns. Consequently this method is not unique because usually more than one
filled subset can be chosen. Further, most experimenters are not happy with the notion
of discarding data that may have been costly to obtain.

Another possibility is to estimate µij for missing subclasses by some biased procedure.
For example, one can estimate µij such that E(µ̂ij) = µ+ ai + bj + some function of the
γij associated with filled subclasses. One way of doing this is to set up least squares
equations with the following restrictions.∑

j
γij = 0 for i = 1, . . . , r.∑
i
γij = 0 for j = 1, . . . , c.

γij = 0 if nij = 0.

This is the method used in Harvey’s computer package. When equations with these
restrictions are solved,

µ̂ij = µ+ aoi + boj + γoij = ȳij.,

when nij > 0 and thus is unbiased. A biased estimator for a missing subclass is µo+aoi +b
o
j ,

and this has expectation µ+ ai + bj +
∑
i

∑
j kijγij, where summation in the last term is

over filled subclass and
∑
i

∑
j kij = 1. Harvey’s package does not compute this but does

produce ”least squares means” for main effects and some of these are biased.

Thus µ̂ij is BLUE for filled subclasses and is biased for empty subclasses. In the class
of estimators of µij with expectation µ+ ai + bj + some linear function of µij associated
with filled subclasses, this method minimizes the contribution of quadratics in γ to mean
squared error when the squares and products of the elements of γ are in accord with no
particular pattern of values. This minimization might appear to be a desirable property,
but unfortunately the method does not control contributions of σ2

e to MSE. If one wishes
to minimize the contribution of σ2

e , but not to control on quadratics in γ, while still
having E(µ̂ij) contain µ + ai + bj, the way to accomplish this is to solve least squares
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equations with γ dropped. Then the biased estimators in this case for filled as well as
empty subclasses, are

µ̂ij = µo + aoi + boj . (23)

A third possibility is to assume some prior values of σ2
e and squares and products

of γij and compute as in Section 9.1. Then all µ̂ij are biased by γij but have in their
expectations µ + ai + bj. Finally one could relax the requirement of µ + ai + bj in the
expectation of µ̂ij. In that case one would assume average values of squares and products
of the ai and bj as well as for the γj and use the method described in Section 9.1.

Of these biased methods, I would usually prefer the one in which priors on the γ,
but not on a and b are used. In most fixed, 2 way models the number of levels of a and
b are too small to obtain a good estimate of the pseudo-variances of a and b.

We illustrate these methods with a 4× 3 design with 2 missing subclasses as follows.

nij yij.
1 2 3 4 1 2 3 4

1 5 2 3 2 30 11 13 7
2 4 2 0 5 21 6 – 9
3 3 0 1 4 12 – 3 15

4 A Method Based On Assumption γij = 0 If nij = 0

First we illustrate estimation under sum to 0 model for γ and in addition the as-
sumption that γ23 = γ32 = 0. The simplest procedure for this set of restrictions is to solve
for ao, bo in equations (17.24).

4 0 0 1 1 1 1
3 0 1 1 0 1

3 1 0 1 1
3 0 0 0

2 0 0
2 0

3



(
ao

bo

)
=



19.333
10.05
10.75
15.25
8.5

7.333
9.05


. (24)

The first right hand side is 30
5

+ 11
2

+ 13
3

+ 7
2

= 19.333, etc. for others. A solution is
(3.964, 2.286, 2.800, 2.067, 1.125, .285, 0). The estimates of µij are ȳij. for filled subclasses
and 2.286 + .285 for µ̂23 and 2.800 + 1.125 for µ̂32. If γ̂ij are wanted they are

γ̂11 = ȳ11 − 3.964− 1.125

etc, for filled subclasses, and 0 for γ̂23 and γ̂32.
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The same results can be obtained, but with much heavier computing by solving least
squares equations with restrictions on γ that are

∑
j γij = 0 for all i,

∑
i γij = 0 for all

j, and γij = 0 for subclasses with nij = 0. From these equations one can obtain sums of
squares that mimic weighted squares of means. A solution to the restricted equations is

µo = 0,

ao = (3.964, 2.286, 2.800, 2.067)′.

bo = (1.125, .285, 0)′.

γo = (−.031, .411, .084, −.464, .897, −.411,

0, −.486, −.866, 0, −.084, .950)′.

Note that the solution to γ conforms to the restrictions imposed. Also note that this
solution is the same as the one previously obtained. Further, µ̂ij = µo+aoi + boj +γoij = ȳij.
for filled subclasses.

A test of hypothesis that the main effects are equal, that is µ̄i. = µ̄i′ for all pairs of i,
i′, can be effected by taking a new solution to the restricted equations with ao dropped.
Then the SS for rows is

(βo)′ RHS− (βo
∗)
′ RHS∗, (25)

where βo is a solution to the full set of equations, and this reduction is simply
∑
i

∑
j y

2
ij/nij.,

βo
∗ is a solution with a deleted from the set of equations, and RHS∗ is the right hand side.

This tests a nontestable hypothesis inasmuch as the main effects are not estimable when
subclasses are missing. The test is valid only if γij are truly 0 for all missing subclasses,
and this is not a testable assumption, Henderson and McAllister (1978). If one is to use
a test based on non-estimable functions, as is done in this case, there should be some
attempt to evaluate the numerator with respect to quadratics in fixed effects other than
those being tested and use this in the denominator. That is, a minimum requirement
could seem to be a test of this sort.

E(numerator) = Qt(a) +Q (fixed effects causing bias in the estimator)

+ linear functions of random variables.

Then the denominator should have the same expectation except that Qt(a), the quadratic
in fixed effects being tested, would not be present. In our example the reduction under
the full model with restrictions on γ is 579.03, and this is the same as the uncorrected
subclass sum of squares. A solution with γ restricted as before and with a dropped is

µo = 0,

bo = (5.123, 4.250, 4.059, 2.790)′,

γo = (.420, .129, −.119, −.430, .678, −.129,

0, −.549, −1.098, 0, .119, .979)′.

This gives a reduction of 566.32. Then the sum of squares with 2 df for the numerator
is 579.03-566.32, but σ̂2

e is not an appropriate denominator MS, when σ̂2
e is the within
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subclass mean square, unless γ23 and γ32 are truly equal to zero, and we cannot test this
assumption.

Similarly a solution when b is dropped is

µo = 0,

ao = (5.089, 3.297, 3.741)′,

γo = (.098, .254, −.355, .003, 1.035, −.254,

0, −.781, −1.133, 0, .355, .778)′.

The reduction is 554.81. Then if γ23 and γ32 = 0, the numerator sum of squares with 3 df
is 579.03-554.81. The sum of squares for interaction with (3-1)(4-1)-2 = 4 df. is 579.03
- reduction with γ and the Lagrange multiplier deleted. This latter reduction is 567.81
coming from a solution

µo = 0,

ao = (3.930, 2.296, 2.915)′, and

βo = (2.118, 1.137, .323, 0)′.

5 Biased Estimation By Ignoring γ

Another biased estimation method sometimes suggested is to ignore γ. That is, least
squares equations with only µo, ao, bo are solved. This is sometimes called the method
of fitting constants, Yates (1934). This method has quite different properties than the
method of Section 17.4. Both obtain estimators of µij with expectations µ+ai+bj + linear
functions of γij. The method of section 17.4 minimizes the contribution of quadratics in
γ to MSE, but does a poor job of controlling on the contribution of σ2

e . In contrast,
the method of fitting constants minimizes the contribution of σ2

e but does not control
quadratics in γ. The method of the next section is a compromise between these two
extremes.

A solution for our example for the method of this section is

µo = 0,

ao = (3.930, 2.296, 2.915)′,

bo = (2.118, 1.137, .323, 0)′.

Then if we wish µ̂ij these are µo + aoi + boj .

A test of row effects often suggested is to compute the reduction in SS under the
model with γ dropped minus the reduction when a and γ are dropped, the latter being
simply

∑
j y

2
.j./n.j.. Then this is tested against some denominator. If σ̂2

e is used, the
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denominator is too small unless γ is 0 . If R × C for MS is used, the denominator
is probably too large. Further, the numerator is not a test of rows averaged in some
logical way across columns, but rather each row is averaged differently depending upon
the pattern of subclass numbers. That is, K′β is dependent upon the incidence matrix,
an obviously undesirable property.

6 Priors On Squares And Products Of γ

The methods of the two preceding sections control in the one case on γ and the other
on σ2

e as contributors to MSE. The method of this section is an attempt to control on
both. The logic of the method depends upon the assumption that there is no pattern of
values of γ, such, for example as linear by columns or linear by rows. Then consider the
matrix of squares and products of elements of γij for all possible permutations of rows
and columns. The average values are found to be

γ2
ij = α.

γijγij′ = −α/(c− 1).

γijγi′j = −α/(r − 1).

γijγi′j′ = α/(r − 1)(c− 1). (26)

Note that if we substitute σ2
γ for α, this is the same matrix as that for V ar(γ) in the

finite random rows and finite random columns model. Then if we have estimates of σ2
e

and α or an estimate of the relative magnitudes of these parameters, we can proceed to
estimate with a and b regarded as fixed and γ regarded as a pseudo random variable.

We illustrate with our same numerical example. Assume that σ2
e = 20 and α =

6. Write the least squares equations that include γ23 and γ32, the missing subclasses.
Premultiply the last 12 equations by

6 −2 −2 −2 −3 1 1 1 −3 1 1 1
6 −2 −2 1 −3 1 1 1 −3 1 1

6 −2 1 1 −3 1 1 1 −3 1
6 1 1 1 −3 1 1 1 −3

6 −2 −2 −2 −3 1 1 1
6 −2 −2 1 −3 1 1

6 −2 1 1 −3 1
6 1 1 1 −3

6 −2 −2 −2
6 −2 −2

6 −2
6



. (27)

Then add 1 to each of the last 12 diagonals. The resulting coefficient matrix is (17.28) . . .
(17.31). The right hand side vector is (3.05, 1.8, 1.5, 3.15, .85, .8, 2.6, .4, 1.8, -4.8, .95,
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1.15, -2.25, .15, -3.55, -1.55, .45, 4.65)′ β
′

= (a1a2a3b1b2b3γ
′
). Thus µ and b4 are deleted,

which is equivalent to obtaining a solution with µo = 0, bo4 = 0.

Upper left 9 × 9

.6 0 0 .25 .1 .15 .25 .1 .15
0 .55 0 .2 .1 0 0 0 0
0 0 .4 .15 0 .05 0 0 0

.25 .2 .15 .6 0 0 .25 0 0
.1 .1 0 0 .2 0 0 .1 0
.15 0 .05 0 0 .2 0 0 .15
.8 −.25 −.2 .45 −.1 −.25 2.5 −.2 −.3
−.4 .15 .4 −.15 .3 −.25 −.5 1.6 −.3

0 .55 .2 −.15 −.1 .75 −.5 −.2 1.9


(28)

Upper right 9 × 9

.1 0 0 0 0 0 0 0 0
0 .2 .1 0 .25 0 0 0 0
0 0 0 0 0 .15 0 .05 .2
0 .2 0 0 0 .15 0 0 0
0 0 .1 0 0 0 0 0 0
0 0 0 0 0 0 0 .05 0

−.2 −.6 .1 0 .25 −.45 0 .05 .2
−.2 .2 −.3 0 .25 .15 0 .05 .2
−.2 .2 .1 0 .25 .15 0 −.15 .2


(29)

Lower left 9 × 9

−.4 −.45 −.4 −.15 −.1 −.25 −.5 −.2 −.3
−.4 .5 −.2 0 −.1 .2 −.75 .1 .15
.2 −.3 .4 0 .3 .2 .25 −.3 .15
0 −1.1 .2 0 −.1 −.6 .25 .1 −.45
.2 .9 −.4 0 −.1 .2 .25 .1 .15
−.4 −.25 .4 −.45 .2 .05 −.75 .1 .15
.2 .15 −.8 .15 −.6 .05 .25 −.3 .15
0 .55 −.4 .15 .2 −.15 .25 .1 −.45
.2 −.45 .8 .15 .2 .05 .25 .1 .15


(30)
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Lower right 9 × 9

1.6 .2 .1 0 −.75 .15 0 .05 −.6
.1 2.2 −.2 0 −.5 −.45 0 .05 .2
.1 −.4 1.6 0 −.5 .15 0 .05 .2
.1 −.4 −.2 1.0 −.5 .15 0 −.15 .2
−.3 −.4 −.2 0 2.5 .15 0 .05 −.6
.1 −.6 .1 0 .25 1.9 0 −.1 −.4
.1 .2 −.3 0 .25 −.3 1.0 −.1 −.4
.1 .2 .1 0 .25 −.3 0 1.3 −.4
−.3 .2 .1 0 −.75 −.3 0 −.1 2.2


(31)

The solution is

ao = (3.967, 2.312, 2.846)′.

bo = (2.068, 1.111, .288, 0)′.

γo displayed as a table is

1 2 3 4
1 -.026 .230 .050 -.255
2 .614 -.230 0 -.384
3 -.588 0 -.050 .638

Note that the γoij sum to 0 by rows and columns. Now the µ̂ij = aoi + boj + γoij. The same
solution can be obtained more easily by treating γ as a random variable with V ar = 12I.
The value 12 comes from rc

(r−1)(c−1)
6 = (3)4

(2)3
(6) = 12. The resulting coefficient matrix

(times 60) is in (17.32). The right hand side vector is (3.05, 1.8, 1.5, 3.15, .85, .8, 1.5, .55,
.65, .35, 1.05, .3, 0, .45, .6, 0, .15, .75)′. µ and b4 are dropped as before.

36 0 0 15 6 9 15 6 9 6 0 0 0 0 0 0 0 0
33 0 12 6 0 0 0 0 0 12 6 0 15 0 0 0 0

24 9 0 3 0 0 0 0 0 0 0 0 9 0 3 12
36 0 0 15 0 0 0 12 0 0 0 9 0 0 0

12 0 0 6 0 0 0 6 0 0 0 0 0 0
12 0 0 9 0 0 0 0 0 0 0 3 0


(32)

diag (20,11,14,11,17,11,5,20,14,5,8,17)

The solution is the same as before. This is clearly an easier procedure than using the
equations of (17.28). The inverse of the matrix of (17.28) post-multiplied by(

I 0
0 P

)
,
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where P = the matrix of (17.27), is not the same as the inverse of the matrix of (17.32)
with diagonal G, but if we pre-multiply each of them by K′ and then post-multiply by
K, where K′ is the representation of µij in terms of a, b, γ, we obtain the same matrix,
which is the mean squared error for the µ̂ij under the priors used, σ2

e = 20 and α = 6.
Biased estimates of µ̂ij are in both methods 6.009 5.308 4.305 3.712

4.994 3.192 2.600 1.928
4.327 3.957 3.084 3.484

 .
The estimated MSE matrix of this vector is
Upper left 8 × 8

3.58 .32 .18 .46 .28 −.32 −.87 −.09
8.34 .15 .64 −.43 1.66 −2.29 −.32

6.01 .38 .02 −.15 4.16 .04
7.64 −.29 −.64 −1.77 .49

4.40 .43 1.93 .31
8.34 2.29 .32

33.72 1.54
3.63


Upper right 8 × 4 

.33 −.70 −.55 −.11

.04 5.21 −.45 .08
−.33 −1.33 1.97 −.24
−.37 −1.47 −1.14 .57
.34 −1.09 −.06 −.24
−.04 4.79 .45 −.08
−1.12 −4.67 7.51 −1.04
−.25 −1.04 −.13 .22


Lower right 4 × 4 

5.66 2.62 1.00 .50
33.60 4.00 2.03

14.08 .73
4.44



Suppose we wish an approximate test of the hypothesis that µ̄i. are equal. In this
case we could write K′ as(

1 0 −1 0 0 0 1
4

1
4

1
4

1
4

0 0 0 0 −1
4

−1
4

−1
4

−1
4

0 1 −1 0 0 0 0 0 0 0 1
4

1
4

1
4

1
4
−1
4

−1
4

−1
4

−1
4

)
.
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Then compute K′CK, where C is either the g-inverse of (17.28) post-multiplied by(
I 0
0 P

)
,

or the g-inverse of the matrix using diagonal G. This 2×2 matrix gives the MSE for σ2
e =

20, α = 6. Finally premultiply the inverse of this matrix by (K′βo)′ and post-multiply by
K′βo. This quantity is distributed approximately as χ2

2 under the null hypothesis.

7 Priors On Squares And Products Of a, b, And γ

Another possibility for biased estimation is to require only that

E(µ̂ij) = µ+ linear functions of a,b, γ.

We do this by assuming prior values of squares and products of a and of b as
1 −1

r−1
. . .

−1
r−1

1

 σ2
a and


1 −1

c−1
. . .

−1
c−1

1

σ2
b ,

respectively, where σ2
a and σ2

b are pseudo-variances. The prior on γ is the same as in
Section 17.6. Then we apply the method for singular G.

To illustrate in our example, let the priors be α2
e = 20, α2

a = 4, α2
b = 9, α2

γ = 6. Then
we multiply all equations except the first pertaining to µ by Paσ

2
a 0 0

0 Pbσ
2
b 0

0 0 Pγσ
2
γ

 ,
and add 1’s to all diagonals except the first. This yields the equations with coefficient
matrix in (17.33) . . . (17.36) and right hand vector = (6.35, 5.60, -1.90, -3.70, 18.75, -8.85,
-9.45, -.45, 2.60, .40, 1.80, -4.80, .95, 1.15, -2.25, .15, -3.55, -1.55, .45, 4.65)′.

Upper left 10 × 10

1.55 .6 .55 .4 .6 .2 .2 .55 .25 .1
.5 3.4 −1.1 −.8 .3 .2 .5 −.5 1.0 .4
.2 −1.2 3.2 −.8 0 .2 −.4 .4 −.5 −.2
−.7 −1.2 −1.1 2.6 −.3 −.4 −.1 .1 −.5 −.2
2.55 1.2 .75 .6 6.4 −.6 −.6 −1.65 2.25 −.3
−2.25 −.6 −.45 −1.2 −1.8 2.8 −.6 −1.65 −.75 .9
−2.25 0 −1.65 −.6 −1.8 −.6 2.8 −1.65 −.75 −.3

1.95 −.6 1.35 1.2 −1.8 −.6 −.6 5.95 −.75 −.3
.35 .8 −.25 −.2 .45 −.1 −.25 .25 2.5 −.2
.15 −.4 .15 .4 −.15 .3 −.25 .25 −.5 1.6



(33)
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Upper right 10 × 10

.15 .1 .2 .1 0 .25 .15 0 .05 .2
.6 .4 −.4 −.2 0 −.5 −.3 0 −.1 −.4
−.3 −.2 .8 .4 0 1.0 −.3 0 −.1 −.4
−.3 −.2 −.4 −.2 0 −.5 .6 0 .2 .8
−.45 −.3 1.8 −.3 0 −.75 1.35 0 −.15 −.6
−.45 −.3 −.6 .9 0 −.75 −.45 0 −.15 −.6
1.35 −.3 −.6 −.3 0 −.75 −.45 0 .45 −.6
−.45 .9 −.6 −.3 0 2.25 −.45 0 −.15 1.8
−.3 −.2 −.6 .1 0 .25 −.45 0 .05 .2
−.3 −.2 .2 −.3 0 .25 .15 0 .05 .2



(34)

Lower left 10 × 10

.75 0 .55 .2 −.15 −.1 .75 .25 −.5 −.2
−1.25 −.4 −.45 −.4 −.15 −.1 −.25 −.75 −.5 −.2
−.1 −.4 .5 −.2 0 −.1 .2 −.2 −.75 .1
.3 .2 −.3 .4 0 .3 .2 −.2 .25 −.3
−.9 0 −1.1 .2 0 −.1 −.6 −.2 .25 .1
.7 .2 .9 −.4 0 −.1 .2 .6 .25 .1

−.25 −.4 −.25 .4 −.45 .2 .05 −.05 −.75 .1
−.45 .2 .15 −.8 .15 −.6 .05 −.05 .25 −.3
.15 0 .55 −.4 .15 .2 −.15 −.05 .25 .1
.55 .2 −.45 .8 .15 .2 .05 .15 .25 .1



(35)

Lower right 10 × 10

1.9 −.2 .2 .1 0 .25 .15 0 −.15 .2
−.3 1.6 .2 .1 0 −.75 .15 0 .05 −.6
.15 .1 2.2 −.2 0 −.5 −.45 0 .05 .2
.15 .1 −.4 1.6 0 −.5 .15 0 .05 .2
−.45 .1 −.4 −.2 1.0 −.5 .15 0 −.15 .2
.15 −.3 −.4 −.2 0 2.5 .15 0 .05 −.6
.15 .1 −.6 .1 0 .25 1.9 0 −.1 −.4
.15 .1 .2 −.3 0 .25 −.3 1.0 −.1 −.4
−.45 .1 .2 .1 0 .25 −.3 0 1.3 −.4
.15 −.3 .2 .1 0 −.75 −.3 0 −.1 2.2



(36)

The solution is

µ̂ = 4.014,

â = (.650, −.467, −.183),

b̂ = (.972, .120, −.208, −.885),

γ̂ =

 .111 .225 −.170 −.166
.489 −.276 .303 −.515
−.599 .051 −.133 .681

 .
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Note that
∑
i âi =

∑
j b̂j = 0 and the γ̂ij sum to 0 by rows and columns. A solution

can be obtained by pretending that a, b, γ are random variables with V ar(a) = 3I,
V ar(b) = 8I, V ar(γ) = 12I. The coefficient matrix of these is in (17.37) . . . (17.39) and
the right hand side is (6.35, 3.05, 1.8, 1.5, 3.15, .85, .8, 1.55, 1.5, .55, .65, .35, 1.05, .3, 0,
.45, .6, 0, .15, .75)’. The solution is

µ̂ = 4.014,

â = (.325, −.233, −.092)′,

b̂ = (.648, .080, −.139, −.590)′,

γ̂ =

 .760 .590 .086 −.136
.580 −.470 0 −1.043
−.367 0 −.294 .295

 .
This is a different solution from the one above, but the µ̂ij are identical for the two. These
are as follows, in table form, 5.747 5.009 4.286 3.613

5.009 3.391 3.642 2.148
4.204 4.003 3.490 3.627

 .
Note that

∑
i âi =

∑
j b̂j = 0, but the γ̂ij do not sum to 0 by rows and columns.∑

j
γ̂ij = σ2

γ âi/σ
2
a = 4 âi.∑

i
γ̂ij = σ2

γ b̂j/σ
2
b = 1.5 b̂j.

The pseudo variances come from (15.18) and (15.19).

σ2
∗a =

3

2
(4) − 3

(2)3
(6) = 3.

σ2
∗b =

4

3
(9) − 4

(2)3
(6) = 8.

σ2
∗γ =

(3)4

(2)3
(6) = 12.

Upper left 8 × 8

120−1



186 72 66 48 72 24 24 66
112 0 0 30 12 18 12

106 0 24 12 0 30
88 18 0 6 24

87 0 0 0
39 0 0

39 0
81


(37)
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Lower left 12 × 8 and (upper right 12 × 8)’

120−1



30 30 0 0 30 0 0 0
12 12 0 0 0 12 0 0
18 18 0 0 0 0 18 0
12 12 0 0 0 0 0 12
24 0 24 0 24 0 0 0
12 0 12 0 0 12 0 0
0 0 0 0 0 0 0 0

30 0 30 0 0 0 0 30
18 0 0 18 18 0 0 0
0 0 0 0 0 0 0 0
6 0 0 6 0 0 6 0

24 0 0 24 0 0 0 24



(38)

Lower 12 × 12

= 120−1 diag (40, 22, 28, 22, 34, 22, 10, 40, 28, 10, 16, 34) (39)

Approximate tests of hypotheses can be effected as described in the previous section.
K′ for SS Rows is (times .25)(

0 4 0 −4 0 0 0 0 1 1 1 1 0 0 0 0 −1 −1 −1 −1
0 0 4 −4 0 0 0 0 0 0 0 0 1 1 1 1 −1 −1 −1 −1

)
.

K′ for SS columns is 0 0 0 0 3 0 0 3 1 0 0 −1 1 0 0 −1 1 0 0 −1
0 0 0 0 0 3 0 3 0 1 0 −1 0 1 0 −1 0 1 0 −1
0 0 0 0 0 0 3 3 0 0 1 −1 0 0 1 1 0 0 1 −1

 /3.

8 The Two Way Mixed Model

The two way mixed model is one in which the elements of the rows (or columns) are a
random sample from some population of rows (or columns), and the levels of columns (or
rows) are fixed. We shall deal with random rows and fixed columns. There is really more
than one type of mixed model, as we shall see, depending upon the variance-covariance
matrices, V ar(a) and V ar(γ), and consequently V ar(α), where α = vector of elements,
µ+ ai + bj + γij. The most commonly used model is

V ar(α) =


C 0 · · · 0
0 C · · · 0
...

...
...

0 0 C

 , (40)
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where C is q × q, q being the number of columns. There are p such blocks down the
diagonal, where p is the number of rows. C is a matrix with every diagonal = v and every
off-diagonal = c. If the rows were sires and the columns were traits and if V ar(e) = Iσ2

e ,
this would imply that the heritability is the same for every trait, 4 v/(4v + σ2

e), and the
genetic correlation between any pair of traits is the same, c/v. This set of assumptions
should be questioned in most mixed models. Is it logical to assume that V ar(αij) =
V ar(αij′) and that Cov(αij, αik) = Cov(αij, αim)? Also is it logical to assume that
V ar(eijk) = V ar(eij′k)? Further we cannot necessarily assume that αij is uncorrelated
with αi′j. This would not be true if the ith sire is related to the i′ sire. We shall deal more
specifically with these problems in the context of multiple trait evaluation.

Now let us consider what assumptions regarding

V ar

(
a
γ

)

will lead to V ar(α) like (17.40). Two models commonly used in statistics accomplish this.
The first is based on the model for unrelated interactions and main effects formulated in
Section 15.4.

V ar(a) = Iσ2
a,

since the number of levels of a in the population →∞, and

V ar(γij) = σ2
γ.

Cov(γij, γij′) = −σ2
γ/(q − 1).

Cov(γij, γi′j) = −σ2
γ/(one less than population levels of a) = 0.

Cov(γij, γi′j) = −σ2
γ/(q − 1) (one less than population levels of a) = 0.

This leads to

V ar(γ) =


P 0 · · · 0
0 P · · · 0
...

...
...

 σ2
y, (41)

where P is a matrix with 1′s in diagonals and −1/(q − 1) in all off-diagonals. Under this
model

V ar(αij) = σ2
a + σ2

γ.

Cov(αij, αij′) = σ2
a − σ2

γ/(q − 1). (42)

An equivalent model often used that is easier from a computational standpoint, but
less logical is

V ar(a∗) = Iσ2
∗a, where σ2

∗a = σ2
a − σ2

γ/(q − 1).

V ar(γ∗) = Iσ2
∗γ, where σ2

∗γ = qσ2
γ/(q − 1). (43)
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Note that we have re-labelled the row and interaction effects because these are not the
same variables as a and γ.

The results of (17.43) come from principles described in Section 15.9. We illustrate
these two models (and estimation and prediction methods) with our same two way exam-
ple. Let

V ar(e) = 20I, V ar(a) = 4I, and

V ar(γ) = 6

 P 0 0
0 P 0
0 0 P

 ,
where P is a 4× 4 matrix with 1’s for diagonals and −1/3 for all off-diagonals. We set up
the least squares equations with µ deleted, multiply the first 3 equations by 4 I3 and the
last 12 equations by V ar(γ) described above. Then add 1 to the first 4 and the last 12
diagonal coefficients. This yields equations with coefficient matrix in (17.44) . . . (17.47).
The right hand side is (12.2, 7.2, 6.0, 3.15, .85, .8, 1.55, 5.9, -1.7, -.9, -3.3, 4.8, -1.2, -3.6,
0, 1.8, -3.0, -1.8, 3.0)′.

Upper left 10 × 10

3.4 0 0 1.0 .4 .6 .4 1.0 .4 .6
0 3.2 0 .8 .4 0 1.0 0 0 0
0 0 2.6 .6 0 .2 .8 0 0 0

.25 .2 .15 .6 0 0 0 .25 0 0
.1 .1 0 0 .2 0 0 0 .1 0
.15 0 .05 0 0 .2 0 0 0 .15
.1 .25 .2 0 0 0 .55 0 0 0
.8 0 0 1.5 −.2 −.3 −.2 2.5 −.2 −.3
−.4 0 0 −.5 .6 −.3 −.2 −.5 1.6 −.3

0 0 0 −.5 −.2 .9 −.2 −.5 −.2 1.9



(44)

Upper right 10 × 9 

.4 0 0 0 0 0 0 0 0
0 .8 .4 0 1.0 0 0 0 0
0 0 0 0 0 .6 0 .2 .8
0 .2 0 0 0 .15 0 0 0
0 0 .1 0 0 0 0 0 0
0 0 0 0 0 0 0 .05 0
.1 0 0 0 .25 0 0 0 .2
−.2 0 0 0 0 0 0 0 0
−.2 0 0 0 0 0 0 0 0
−.2 0 0 0 0 0 0 0 0



(45)
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Lower left 9 × 10

−.4 0 0 −.5 −.2 −.3 .6 −.5 −.2 −.3
0 .5 0 1.2 −.2 0 −.5 0 0 0
0 −.3 0 −.4 .6 0 −.5 0 0 0
0 −1.1 0 −.4 −.2 0 −.5 0 0 0
0 .9 0 −.4 −.2 0 1.5 0 0 0
0 0 .4 .9 0 −.1 −.4 0 0 0
0 0 −.8 −.3 0 −.1 −.4 0 0 0
0 0 −.4 −.3 0 .3 −.4 0 0 0
0 0 .8 −.3 0 −.1 1.2 0 0 0


(46)

Lower right 9 × 9

1.6 0 0 0 0 0 0 0 0
0 2.2 −.2 0 −.5 0 0 0 0
0 −.4 1.6 0 −.5 0 0 0 0
0 −.4 −.2 1.0 −.5 0 0 0 0
0 −.4 −.2 0 2.5 0 0 0 0
0 0 0 0 0 1.9 0 −.1 −.4
0 0 0 0 0 −.3 1.0 −.1 −.4
0 0 0 0 0 −.3 0 1.3 −.4
0 0 0 0 0 −.3 0 −.1 2.2


(47)

The solution is

â = (.563, −.437, −.126)′.

b̂ = (5.140, 4.218, 3.712, 2.967)′.

γ̂ =

 .104 .163 −.096 −.170
.421 −.226 .219 −.414
−.524 .063 −.122 .584

 .
The γ̂ij sum to 0 by rows and columns.

When we employ the model with V ar(a∗) = 2I and V ar(γ∗) = 8I, the coefficient
matrix is in (17.48) . . . (17.50) and the right hand side is (3.05, 1.8, 1.5, 3.15, .85, .8, 1.55,
1.5, .55, .65, .35, 1.05, .3, 0, .45, .6, 0, .15, .75)′.

Upper left 7 × 7 

1.1 0 0 .25 .1 .15 .1
1.05 0 .2 .1 0 .25

.9 .15 0 .05 .2
.6 0 0 0

.2 0 0
.2 0

.55


(48)
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Lower left 12 × 7 and (upper right 7 × 12)′

.25 0 0 .25 0 0 0
.1 0 0 0 .1 0 0
.15 0 0 0 0 .15 0
.1 0 0 0 0 0 .1
0 .2 0 .2 0 0 0
0 .1 0 0 .1 0 0
0 0 0 0 0 0 0
0 .25 0 0 0 0 .25
0 0 .15 .15 0 0 0
0 0 0 0 0 0 0
0 0 .05 0 0 .05 0
0 0 .2 0 0 0 .2



(49)

Lower right 12 × 12

= diag (.375, .225, .275, .225, .325, .225, .125, .375, .275, .125, .175, .325). (50)

The solution is

â = (.282, −.219, −.063)′, different from above.

b̂ = (5.140, 4.218, 3.712, 2.967)′, the same as before.

γ̂ =

 .385 .444 .185 .112
.202 −.444 0 −.632
−.588 0 −.185 .521

 ,
different from above. Now the γ̂ sum to 0 by columns, but not by rows. This sum is

σ2
∗γ âi/σ

2
∗a = 4âi.

As we should expect, the predictions of subclass means are identical in the two solutions.
These are  5.807 4.945 4.179 3.360

5.124 3.555 3.493 2.116
4.490 4.155 3.463 3.425

 .
These are all unbiased, including missing subclasses. This is in contrast to the situation
in which both rows and columns are fixed. Note, however, that we should not predict µij
except for j = 1, 2, 3, 4. We could predict µij (j=1,2,3,4) for i > 3, that is for rows not in

the sample. BLUP would be b̂j. Remember, that b̂j is BLUP of bj + the mean of all ai in
the infinite population, and ai is BLUP of ai minus the mean of all ai in the population.

We could, if we choose, obtain biased estimators and predictors by using some prior
on the squares and products of b, say

1 −1
3

. . .
−1
3

1

 σ2
b ,
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where σ2
b is a pseudo-variance.

Suppose we want to estimate the variances. In that case the model with

V ar(a∗) = Iσ2
∗a and V ar(γ∗) = Iσ2

∗γ

is obviously easier to deal with than the pedagogically more logical model with V ar(γ)
not a diagonal matrix. If we want to use that model, we can estimate σ2

∗a and σ2
∗γ and

then by simple algebra convert those to estimates of σ2
a and σ2

γ .
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Chapter 18
The Three Way Classification

C. R. Henderson

1984 - Guelph

This chapter deals with a 3 way classification model,

yijkm = µ+ ai + bj + ck + abij + acik + bcjk + abcijk + eijkm. (1)

We need to specify the distributional properties of the elements of this model.

1 The Three Way Fixed Model

We first illustrate a fixed model with V ar(e) = Iσ2
e . A simple way to approach this

model is to write it as
yijkm = µijk + eijkm. (2)

Then BLUE of µijk is yijk. provided nijk > 0. Also BLUE of∑
i

∑
j

∑
k

pijk µijk =
∑

i

∑
j

∑
k

pijk yijk.,

where summation is over subclasses that are filled. But if subclasses are missing, there
may not be linear functions of interest to the experimenter. Analogous to the two-way
fixed model we have these definitions.

a effects = µi.. − µ...,

b effects = µ.j. − µ...,

c effects = µ..k − µ...,

ab interactions = µij. − µi.. − µ.j. + µ...,

abc interactions = µijk − µij. − µi.k − µ.jk

+µi.. + µ.j. + µ..k − µ... . (3)

None of these is estimable if a single subclass is missing. Consequently, the usual tests of
hypotheses cannot be effected exactly.

1



2 The Filled Subclass Case

Suppose we wish to test the hypotheses that a effects, b effects, c effects, ab inter-
actions, ac interactions, bc interactions, and abc interactions are all zero where these are
defined as in (18.3). Three different methods will be described. The first two involve
setting up least squares equations reparameterized by∑

i

ai = Σ bj = Σ ck = 0∑
j

abij = 0 for all i, etc.

∑
jk

abcijk = 0 for all i, etc. (4)

We illustrate this with a 2× 3× 4 design with subclass numbers and totals as follows

nijk

b1 b2 b3
a c1 c2 c3 c4 c1 c2 c3 c4 c1 c2 c3 c4
1 3 5 2 6 5 2 1 4 5 2 1 1
2 7 2 5 1 6 2 4 3 3 4 6 1

yijk.

b1 b2 b3
a c1 c2 c3 c4 c1 c2 c3 c4 c1 c2 c3 c4
1 53 110 41 118 91 31 9 55 96 31 8 12
2 111 43 89 9 95 26 61 35 52 55 97 10

2



The first 7 columns of X are

1 1 1 0 1 0 0
1 1 1 0 0 1 0
1 1 1 0 0 0 1
1 1 1 0 −1 −1 −1
1 1 0 1 1 0 0
1 1 0 1 0 1 0
1 1 0 1 0 0 1
1 1 0 1 −1 −1 −1
1 1 −1 −1 1 0 0
1 1 −1 −1 0 1 0
1 1 −1 −1 0 0 1
1 1 −1 −1 −1 −1 −1
1 −1 1 0 1 0 0
1 −1 1 0 0 1 0
1 −1 1 0 0 0 1
1 −1 1 0 −1 −1 −1
1 −1 0 1 1 0 0
1 −1 0 1 0 1 0
1 −1 0 1 0 0 1
1 −1 0 1 −1 −1 −1
1 −1 −1 −1 1 0 0
1 −1 −1 −1 0 1 0
1 −1 −1 −1 0 0 1
1 −1 −1 −1 −1 −1 −1



.

The first column pertains to µ, the second to a, the next two to b, and the last 3 to c. The
remaining 17 columns are formed by operations on columns 2-7. Column 8 is formed by
taking the products of corresponding elements of columns 2 and 3. Thus these are 1(1),
1(1), 1(1), 1(1), 1(0), . . ., -1(-1). The other columns are as follows: 9 = 2× 4, 10 = 2× 5,
11 = 2 × 6, 12 = 2 × 7, 13 = 3 × 5, 14 = 3 × 6, 15 = 3 × 7, 16 = 4 × 5, 17 = 4 × 6,
18 = 4× 7, 19 = 2× 13, 20 = 2× 14, 21 = 2× 15, 22 = 2× 16, 23 = 2× 17, 24 = 2× 18.
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This gives the following for columns 8-16 of X

1 0 1 0 0 1 0 0 0
1 0 0 1 0 0 1 0 0
1 0 0 0 1 0 0 1 0
1 0 −1 −1 −1 −1 −1 −1 0
0 1 1 0 0 0 0 0 1
0 1 0 1 0 0 0 0 0
0 1 0 0 1 0 0 0 0
0 1 −1 −1 −1 0 0 0 −1

−1 −1 1 0 0 −1 0 0 −1
−1 −1 0 1 0 0 −1 0 0
−1 −1 0 0 1 0 0 −1 0
−1 −1 −1 −1 −1 1 1 1 1
−1 0 −1 0 0 1 0 0 0
−1 0 0 −1 0 0 1 0 0
−1 0 0 0 −1 0 0 1 0
−1 0 1 1 1 −1 −1 −1 0

0 −1 −1 0 0 0 0 0 1
0 −1 0 −1 0 0 0 0 0
0 −1 0 0 −1 0 0 0 0
0 −1 1 1 1 0 0 0 −1
1 1 −1 0 0 −1 0 0 −1
1 1 0 −1 0 0 −1 0 0
1 1 0 0 −1 0 0 −1 0
1 1 1 1 1 1 1 1 1
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and for columns 17-24 of X,

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 −1 −1 −1 0 0 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 1

−1 −1 0 0 0 −1 −1 −1
0 0 −1 0 0 −1 0 0

−1 0 0 −1 0 0 −1 0
0 −1 0 0 −1 0 0 −1
1 1 1 1 1 1 1 1
0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 1 1 1 0 0 0
0 0 0 0 0 −1 0 0
1 0 0 0 0 0 −1 0
0 1 0 0 0 0 0 −1

−1 −1 0 0 0 1 1 1
0 0 1 0 0 1 0 0

−1 0 0 1 0 0 1 0
0 −1 0 0 1 0 0 1
1 1 −1 −1 −1 −1 −1 −1



.

Then the least squares coefficient matrix is X
′
NX, where N is a diagonal matrix of nijk.

The right hand sides are X
′
y., where y. is the vector of subclass totals. The coefficient

matrix of the equations is in (18.5) . . . (18.7). The right hand side is (1338, -28, 213, 42,
259, 57, 66, 137, 36, -149, -83, -320, -89, -38, -80, -30, -97, -103, -209, -16, -66, -66, 11,
19)’.
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Upper left 12 × 12

81 −7 8 4 13 1 3 6 2 −9 −5 −17
81 6 2 −9 −5 −17 8 4 13 1 3

54 23 −3 −4 −5 −4 −5 −11 0 −3
50 −2 −7 −7 −5 −8 −4 1 1

45 16 16 −11 −4 3 6 6
33 16 0 1 6 7 6

35 −3 1 6 6 −5
54 23 −3 −4 −5

50 −2 −7 −7
45 16 16

33 16
35



. (5)

Upper right 12 × 12 and (lower left 12 × 12)’

−3 −4 −5 −2 −7 −7 −11 0 −3 −4 1 1
−11 0 −3 −4 1 1 −3 −4 −5 −2 −7 −7

9 4 5 6 4 5 −7 −4 −13 2 −2 −5
6 4 5 10 1 3 2 −2 −5 0 −3 −9
7 5 5 8 5 5 −1 5 5 −2 1 1
5 6 5 5 3 5 5 10 5 1 3 1
5 5 5 5 5 3 5 5 7 1 1 3

−7 −4 −13 2 −2 −5 9 4 5 6 4 5
2 −2 −5 0 −3 −9 6 4 5 10 1 3

−1 5 5 −2 1 1 7 5 5 8 5 5
5 10 5 1 3 1 5 6 5 5 3 5
5 5 7 1 1 3 5 5 5 5 5 3



. (6)

Lower right 12 × 12

27 9 9 10 2 2 3 5 5 2 0 0
22 9 2 8 2 5 6 5 0 −2 0

23 2 2 9 5 5 −3 0 0 −5
28 9 9 2 0 0 2 1 1

19 9 0 −2 0 1 −1 1
21 0 0 −5 1 1 −7

27 9 9 10 2 2
22 9 2 8 2

23 2 2 9
28 9 9

19 9
21



. (7)
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The resulting solution is (15.3392, .5761, 2.6596, -1.3142, 2.0092, 1.5358, -.8864, 1.3834,
-.4886, .4311, .2156, -2.5289, -3.2461, 2.2154, 2.0376, .9824, -1.3108, -1.0136, -1.4858,
-1.9251, 1.9193, .6648, .9469, -6836).

One method for finding the numerator sums of squares is to compare reductions,
that is, subtracting the reduction when each factor and interaction is deleted from the
reduction under the full model. For A, equation and unknown 2 is deleted, for B equations
3 and 4 are deleted, . . . , for ABC equations 19-24 are deleted. The reduction under the
full model is 22879.49 which is also simply∑

i

∑
j

∑
k

y2
ijk./nijk.

The sums of squares with their d.f. are as follows.

d.f. SS
A 1 17.88
B 2 207.44
C 3 192.20
AB 2 55.79
AC 3 113.25
BC 6 210.45
ABC 6 92.73

The denominator MS to use is σ̂2
e = (y′y - reduction in full model)/(81-24), where 81 is

n, and 24 is the rank of the full model coefficient matrix.

A second method, usually easier, is to compute for the numerator

SS = (βo
i )
′(V ar(βo

i ))
−1βo

iσ
2
e . (8)

βo
i is a subvector of the solution, βo

2 for A; βo
3 , βo

4 for B, . . . , βo
17, . . . , βo

24 for ABC.
V ar(βo

i ) is the corresponding diagonal block of the inverse of the 24 × 24 coefficient
matrix, not shown, multiplied by σ2

e . Thus

SS for A = .5761 (.0186)−1 .5761,

SS for B = (2.6596 − 1.3142)

(
.0344 −.0140

−.0140 .0352

)−1 (
2.6596

−1.3142

)
,

etc. The terms inverted are diagonal blocks of the inverse of the coefficient matrix. These
give the same results as by the first method.

The third method is to compute

(K′iµ̂)′ (V ar(K′iµ̂))
−1

K′µ̂σ2
e . (9)
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K′iµ = 0 is the hypothesis tested for the ith SS. µ̂ is BLUE of µ, the vector of µijk, and
this is the vector of yijk.

KA is the 2nd column of X.

KB is columns 3 and 4 of X.

...

KABC is the last 6 columns of X.

For example, K′B for SSB is (
1 0 −1 1 0 −1
0 1 −1 −1 1 −1

)
,

where 1 = (1 1 1 1) and 0 = (0 0 0 0).

V ar(µ̂)/σ2
e = N−1,

where N is the diagonal matrix of nijk. Then

V ar(K′µ̂)−1σ2
e = (K′N−1K)−1.

This method leads to the same sums of squares as the other 2 methods.

3 Missing Subclasses In The Fixed Model

When one or more subclasses is missing, the usual estimates and tests of main effects
and interactions cannot be made. If one is satisfied with estimating and testing functions
like K′µ, where µ is the vector of µijk corresponding to filled subclasses, BLUE and exact
tests are straightforward. BLUE of

K′µ = K′y, (10)

where y. is the vector of means of filled 3 way subclasses. The numerator SS for testing
the hypothesis that K′µ = c is

(K′y.− c)′ V ar(K′y.)−1(K′y.− c)σ2
e . (11)

V ar(K′y.)/σ2
e = K′N−1K, (12)

where N is a diagonal matrix of subclass numbers. The statistic of (18.11) is distributed
as central χ2σ2

e with d.f. equal to the number of linearly independent rows of K′. Then
the corresponding MS divided by σ̂2

e is distributed as F under the null hypothesis.
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Unfortunately, if many subclasses are missing, the experimenter may have difficulty
in finding functions of interest to estimate and test. Most of them wish correctly or
otherwise to find estimates and tests that mimic the filled subclass case. Clearly this is
possible only if one is prepared to use biased estimators and approximate tests of the
functions whose estimators are biased.

We illustrate some biased methods with the following 2 × 3 × 4 example.

nijk

b1 b2 b3
a c1 c2 c3 c4 c1 c2 c3 c4 c1 c2 c3 c4
1 3 5 2 6 5 2 0 4 5 2 0 0
2 7 2 5 0 6 2 4 3 3 4 6 0

yijk.

b1 b2 b3
a c1 c2 c3 c4 c1 c2 c3 c4 c1 c2 c3 c4
1 53 110 41 118 91 31 – 55 96 31 – –
2 111 43 89 – 95 26 61 35 52 55 97 –

Note that 5 of the potential 24 abc subclasses are empty and one of the potential 12 bc
subclasses is empty. All ab and ac subclasses are filled. Some common procedures are

1. Estimate and test main effects pretending that no interactions exist.

2. Estimate and test main effects, ac interactions, and bc interactions pretending that bc
and abc interactions do not exist.

3. Estimate and test under a model in which interactions sum to 0 and in which each of
the 5 missing abc and the one missing bc interactions are assumed = 0.

All of these clearly are biased methods, and their “goodness” depends upon the
closeness of the assumptions to the truth. If one is prepared to use biased estimators,
it seems more logical to me to attempt to minimize mean squared errors by using prior
values for average sums of squares and products of interactions. Some possibilities for our
example are:

1. Priors on abc and bc, the interactions associated with missing subclasses.

2. Priors on all interactions.

3. Priors on all interactions and on all main effects.

9



Obviously there are many other possibilities, e.g. priors on c and all interactions.

The first method above might have the greatest appeal since it results in biases due
only to bc and abc interactions. No method for estimating main effects exists that does
not contain biases due to these. But the first method does avoid biases due to main
effects, ab, and ac interactions. This method will be illustrated. Let µ, a, b, c, ab, ac
be treated as fixed. Consequently we have much confounding among them. The rank of
the submatrix of X′X pertaining to them is 1 + (2-1) + (3-1) + (4-1) + (2-1)(3-1) +
(2-1)(4-1) = 12. We set up least squares equations with ab, ac, bc, and abc including
missing subclasses for bc and abc. The submatrix for ab and ac has order, 14 and rank,
12. Treating bc and abc as random results in a mixed model coefficient matrix with
order 50, and rank 48. The OLS coefficient matrix is in (18.13) to (18.18). The upper 26
× 26 block is in (18.13) to (18.15), the upper right 26 × 24 block is in (18.16) to (18.17),
and the lower 24 × 24 block is in (18.18).

16 0 0 0 0 0 3 5 2 6 0 0 0
11 0 0 0 0 5 2 0 4 0 0 0

7 0 0 0 5 2 0 0 0 0 0
14 0 0 0 0 0 0 7 2 5

15 0 0 0 0 0 6 2 4
13 0 0 0 0 3 4 6

13 0 0 0 0 0 0
9 0 0 0 0 0

2 0 0 0 0
10 0 0 0

16 0 0
8 0

15



(13)



0 3 5 2 6 0 0 0 0 0 0 0 0
0 0 0 0 0 5 2 0 4 0 0 0 0
0 0 0 0 0 0 0 0 0 5 2 0 0
0 7 2 5 0 0 0 0 0 0 0 0 0
3 0 0 0 0 6 2 4 3 0 0 0 0
0 0 0 0 0 0 0 0 0 3 4 6 0
0 3 0 0 0 5 0 0 0 5 0 0 0
0 0 5 0 0 0 2 0 0 0 2 0 0
0 0 0 2 0 0 0 0 0 0 0 0 0
0 0 0 0 6 0 0 0 4 0 0 0 0
0 7 0 0 0 6 0 0 0 3 0 0 0
0 0 2 0 0 0 2 0 0 0 4 0 0
0 0 0 5 0 0 0 4 0 0 0 6 0



(14)
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3 0 0 0 0 0 0 0 3 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0

4 0 0 0 0 0 0
4 0 0 0 0 0

7 0 0 0 0
8 0 0 0

6 0 0
6 0

0



(15)



3 5 2 6 0 0 0 0 0 0 0 0 0
0 0 0 0 5 2 0 4 0 0 0 0 0
0 0 0 0 0 0 0 0 5 2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 7
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 5 0 0 0 5 0 0 0 0
0 5 0 0 0 2 0 0 0 2 0 0 0
0 0 2 0 0 0 0 0 0 0 0 0 0
0 0 0 6 0 0 0 4 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 7
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0 7
0 5 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 0 0 0 0
0 0 0 6 0 0 0 0 0 0 0 0 0
0 0 0 0 5 0 0 0 0 0 0 0 0
0 0 0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 4 0 0 0 0 0
0 0 0 0 0 0 0 0 5 0 0 0 0
0 0 0 0 0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0



(16)
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0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
2 5 0 0 0 0 0 0 0 0 0
0 0 0 6 2 4 3 0 0 0 0
0 0 0 0 0 0 0 3 4 6 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 6 0 0 0 3 0 0 0
2 0 0 0 2 0 0 0 4 0 0
0 5 0 0 0 4 0 0 0 6 0
0 0 0 0 0 0 3 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0
0 5 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 6 0 0 0 0 0 0 0
0 0 0 0 2 0 0 0 0 0 0
0 0 0 0 0 4 0 0 0 0 0
0 0 0 0 0 0 3 0 0 0 0
0 0 0 0 0 0 0 3 0 0 0
0 0 0 0 0 0 0 0 4 0 0
0 0 0 0 0 0 0 0 0 6 0
0 0 0 0 0 0 0 0 0 0 0



, (17)

diag(3, 5, 2, 6, 5, 2, 0, 4, 5, 2, 0, 0, 7, 2, 5, 0, 6, 2, 4, 3, 3, 4, 6, 0). (18)

The right hand side is

[322, 177, 127, 243, 217, 204, 240, 172, 41, 173, 258,
124, 247, 35, 164, 153, 130, 118, 186, 57, 61, 90,
148, 86, 97, 0, 53, 110, 41, 118, 91, 31, 0,
55, 96, 31, 0, 0, 111, 43, 89, 0, 95, 26,
61, 35, 52, 55, 97, 0]

We use the diagonalization method and assume that the pseudo-variances are σ2
bc = .3

σ2
e , σ2

abc = .6 σ2
e . Accordingly we add .3−1 to the 15-26 diagonals and .6−1 to the 27-50

diagonals of the OLS equations. This gives the following solution

ab = (20.664, 16.724, 17.812, 0, −3.507, −2.487)′

ac = (.047, −.618, 0, −1.949, 18.268, 17.976, 18.401, 15.441)′

bc = (−1.132, 1.028, −.164, .268, .541, −.366, .093, −.268,

.591, −.662, .071, 0)′
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abc = (−1.229, .694, 0, .535, .666, −.131, 0, −.535, .563,

−.563, 0, 0, −1.034, 1.362, −.328, 0, .416, −.601,

.186, 0, .618, −.760, .142, 0)′.

The biased estimator of µijk is aboij +acoik +bcojk +abcoijk. These are in tabular form ordered
c in b in a by rows.

K = 8−1



1 0
1 0
1 0
1 0
0 1
0 1
0 1
0 1

−1 −1
−1 −1
−1 −1
−1 −1

1 0
1 0
1 0
1 0
0 1
0 1
0 1
0 1

−1 −1
−1 −1
−1 −1
−1 −1



, µ̂ =



18.35
21.77
20.50
19.52
17.98
15.61
16.82
13.97
19.01
15.97
17.88
15.86
16.10
20.37
17.91
15.71
15.72
13.50
15.17
11.67
16.99
14.07
16.13
12.95


The variance-covariance matrix of these µ̂ijk is XCX

′
σ2

e , where X is the 24 x 50 incidence
matrix for yijk, and C is a g-inverse of the mixed model coefficient matrix. Approximate
tests of hypotheses of K′µ = c can be effected by computing

(K′µ̂− c)′[K′XCX
′
K]−1(K′µ̂− c)/(rank (K′X)σ̂2

e).

Under the null hypothesis this is distributed approximately as F .

To illustrate suppose we wish to test that all µ.j. are equal. K′ and µ̂ for this test
are shown above and c = 0. K′µ̂ = (2.66966 − 1.05379)′. The pseudo-variances, σ2

bc

and σ2
abc, could be estimated quite easily by Method 3. One could estimate σ2

e by y′y -
reduction under full model, and this is simply

y′y −
∑

i

∑
j

∑
k

y2
ijk./nijk.
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Then we divide by n - the number of filled subclasses. Three reductions are needed to
estimate σ2

bc and σ2
abc. The easiest ones are probably

Red (full model) described above.

Red (ab,ac,bc).

Red (ab,ac).

Partition the OLS coefficient matrix as

(C1 C2 C3).

C1 represents the first 14 cols., C2 the next 12, and C3 the last 24. Then compute C2C
′
2

and C3C
′
3. Let Q2 be the g-inverse of the matrix for Red (ab,ac,bc), which is the LS

coefficient matrix with rows (and cols.) 27-50 set to 0. Q3 is the g-inverse for Red (ab,ac),
which is the LS coefficient matrix with rows (and cols.) 15-50 set to 0. Then

E[Red (full)] = 19σ2
e + n(σ2

bc + σ2
abc) + t,

E[Red (ab, ac, bc)] = 17σ2
e + nσ2

bc + trQ2C3C
′
3σ

2
abc + t,

E[Red (ab, ac) = 12σ2
e + trQ3C2C

′
2σ

2
bc + trQ3C3C

′
3σ

2
abc + t.

t is a quadratic in the fixed effects. The coefficient of σ2
e is in each case the rank of the

coefficient matrix used in the reduction.

4 The Three Way Mixed Model

Mixed models could be of two general types, namely one factor fixed and two random
such as a fixed and b and c random, or with two factors fixed and one factor random, e.g.
a and b fixed with c random. In either of these we would need to consider whether the
populations are finite or infinite and whether the elements are related in any way. With
a and b fixed and c random we would have fixed ab interaction and random ac,bc, abc
interactions. With a fixed and b and c random all interactions would be random.

We also need to be careful about what we can estimate and predict. With a fixed
and b and c random we can predict elements of ab, ac, and abc only for the levels of
a in the experiment. With a and b fixed we can predict elements of ac,bc, abc only
for the levels of both a and b in the experiment. For infinite populations of b and c in
the first case and c in the second we can predict for levels of b and c (or c) outside the
experiment. BLUP of them is 0. Thus in the case with c random, a and b fixed, BLUP
of the 1,2,20 subclass when the number of levels of c in the experiment <20, is

µo + ao
1 + bo2 + abo12.

In contrast, if the number of levels of c in the experiment >19, BLUP is
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µo + ao
1 + bo2 + ĉ20 + âc1,20 + b̂c2,20 + abo12 + ab̂c12,20.

In the case with a,b fixed and c random, we might choose to place a prior on ab,
especially if ab subclasses are missing in the data. The easiest way to do this would be
to treat ab as a pseudo random variable with variance = Iσ2

ab, which could be estimated.
We could also use priors on a and b if we choose, and then the mixed model equations
would mimic the 3 way random model.
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Chapter 19
Nested Classifications

C. R. Henderson

1984 - Guelph

The nested classification can be described as cross-classification with disconnected-
ness. For example, we could have a cross-classified design with the main factors being
sires and dams. Often the design is such that a set of dams is mated to sire 1 a second
set to sire 2, etc. Then σ2

d and σ2
ds, dams assumed random, cannot be estimated sepa-

rately, and the sum of these is defined as σ2
d/s. As is the case with cross-classified data,

estimability and methods of analysis depend upon what factors are fixed versus random.
We assume that the only possibilities are random within random, random within fixed,
and fixed within fixed. Fixed within random is regarded as impossible from a sampling
viewpoint.

1 Two Way Fixed Within Fixed

A linear model for fixed effects nested within fixed effects is

yijk = ti + aij + eijk

with ti and aij fixed. The j subscript has no meaning except in association with some i
subscript. None of the ti is estimable nor are differences among the ti. So far as the aij

are concerned ∑
j
αjaij for

∑
j
αj = 0 can be estimated.

Thus we can estimate 2ai1−ai2−ai3. In contrast it is not possible to estimate differences
between aij and agh (i 6= g) or between aij and agh (i 6= g, j 6= h). Obviously main effects
can be defined only as some averaging over the nested factors. Thus we could define the
mean of the ith main factor as αi = ti +

∑
jkjaij where

∑
jkj = 1. Then the ith main

effect would be defined as αi -α̃. Tests of hypotheses of estimable linear functions can
be effected in the usual way, that is, by utilizing the variance-covariance matrix of the
estimable functions.

Let us illustrate with the following simple example
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t a nij yij ȳij.

1 1 4 20 5
2 5 15 3

2 3 1 8 8
4 10 70 7
5 2 12 6

3 6 5 45 9
7 2 16 8

Assume that V ar(e) = Iσ2
e .

Main effects α̂i V ar(α̂i)
1 4. σ2

e (4−1 + 5−1)/4 = .1125 σ2
e

2 7. σ2
e (1 + 10−1 + 2−1)/9 = .177 σ2

e

3 8.5 σ2
e (5−1 + 2−1)/4 = .175 σ2

e

Test (
1 0 −1
0 1 −1

)
α = 0(

1 0 −1
0 1 −1

)
α̂ =

(
−3.5
−.5

)
σ−2

e Var (α̂) = dg (.1125, .177 . . . , .175)

V ar(K′α̂)σ−2
e =

(
.2875 .175
.175 .35278

)

with inverse (
4.98283 −2.47180
−2.47180 4.06081

)
.

Then the numerator MS is

(−3.5 − .5)

(
4.98283 −2.47180
−2.47180 4.06081

)(
−3.5
−.5

)
/2 = 26.70

Estimate σ2
e as σ̂2

e = within subclass mean square. Then the test is numerator MS/σ̂2
e

with 2,26 d.f. A possible test of differences among aij could be


1 −1 0 0 0 0 0
0 0 1 0 −1 0 0
0 0 0 1 −1 0 0
0 0 0 0 0 1 −1

 a,

2



the estimate of which is (2 2 1 1)’ with

V ar =


.45 0 0 0
0 1.5 .5 0
0 .5 .6 0
0 0 0 .7

 ,
the inverse of which is

2.22222 0 0 0
0 .92308 −.76923 0
0 −.76923 2.30769 0
0 0 0 1.42857

 .
This gives the numerator MS = 13.24.

The “usual” ANOVA described in many text books is as follows.

S.S. for T =
∑

i
y2

i../ni. − y2
.../n...

S.S. for A =
∑

i

∑
j
y2

ij./nij −
∑

i
y2

i../ni..

In our example,

MST = (1290.759− 1192.966)/2 = 48.897.

MSA = (1304− 1290.759)/1 = 13.24.

Note that the latter is the same as in the previous method. They do in fact test the same
hypothesis. But MST is different from the result above which tests treatments averaged
equally over the a nested within it. The second method tests differences among t weighted
over a according to the number of observations. Thus the weights for t1 are (4,5)/9.

To illustrate this test,

K′ =

(
.444444 .555555 0 0 0 −.71429 −.28572

0 0 .07692 .76923 .15385 −.71429 −.28572

)

V ar(K′ȳij)/σ
2
e =

(
.253968 .142857
.142857 .219780

)

with inverse =

(
6.20690 −4.03448
−4.03448 7.17242

)
Then the MS is

(−4.82540 − 1.79122)

(
6.20690 −4.03448
−4.03448 7.17242

)(
−4.82540
−1.79122

)
/2 = 48.897

as in the regular ANOVA. Thus ANOVA weights according to the nij. This does not
appear to be a particularly interesting test.
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2 Two Way Random Within Fixed

There are two different sampling schemes that can be envisioned in the random nested
within fixed model. In one case, the random elements associated with every fixed factor
are assumed to be a sample from the same population. A different situation is one in
which the elements within each fixed factor are assumed to be from separate populations.
The first type could involve treatments as the fixed factors and then a random sample of
sires is drawn from a common population to assign to a particular treatment. In contrast,
if the main factors are breeds, then the sires sampled would be from separate populations,
namely the particular breeds. In the first design we can estimate the difference among
treatments, each averaged over the same population of sires. In the second case we would
compare breeds defined as the average of all sires in each of the respective breeds.

2.1 Sires within treatments

We illustrate this design with a simple example

nij yij.

Treatments Treatments
Sires 1 2 3 1 2 3

1 5 0 0 7 - -
2 2 0 0 6 - -
3 0 3 0 - 7 -
4 0 8 0 - 9 -
5 0 0 5 - - 8

Let us treat this first as a multiple trait problem with V ar(e) = 40I,

V ar

 si1

si2

si3

 =

 3 2 1
2 4 2
1 2 5

 ,
where sij refers to the value of the ith sire with respect to the jth treatment. Assume that
the sires are unrelated. The inverse is 3 2 1

2 4 2
1 2 5


−1

=

 .5 −.25 0
−.25 .4375 −.125

0 −.125 .25

 .
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Then the mixed model equations are (19.1).

80−1



50 −20 0 0 0 0 0 0 0 0
−20 35 −10 0 0 0 0 0 0 0

0 −10 20 0 0 0 0 0 0 0
0 0 0 44 −20 0 0 0 0 0
0 0 0 −20 35 −10 0 0 0 0
0 0 0 0 −10 20 0 0 0 0
0 0 0 0 0 0 40 −20 0 0
0 0 0 0 0 0 −20 41 −10 0
0 0 0 0 0 0 0 −10 20 0
0 0 0 0 0 0 0 0 0 40
0 0 0 0 0 0 0 0 0 −20
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

10 0 0 4 0 0 0 0 0 0
0 0 0 0 0 0 0 6 0 0
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 10 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 4 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 6 0
0 0 0 0 0 0 0 0

−20 0 0 0 0 0 0 0
51 −10 0 0 0 0 16 0
−10 20 0 0 0 0 0 0

0 0 40 −20 0 0 0 0
0 0 −20 35 −10 0 0 0
0 0 0 −10 30 0 0 10
0 0 0 0 0 14 0 0

16 0 0 0 0 0 22 0
0 0 0 0 10 0 0 10


(s11, s12, s13, s21, s22, s23, s31, s32, s33,

s41, s42, s43, s51, s52, s53, t1, t2, t3)
′

= [.175, 0, 0, .15, 0, 0, 0, .175, 0, 0, .225,

0, 0, 0, .2, .325, .4, .2]′. (1)
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The solution is

(−.1412, −.0941, −.0471, .1412, .0941, .0471, .0918, .1835,

.0918, −.0918, −.1835,−.0918, 0, 0, 0, 1.9176, 1.5380, 1.600)′. (2)

Now if we treat this as a nested model, G = diag (3,3,4,4,5). Then the mixed model
equations are in (19.3).

120−1



55 0 0 0 0 15 0 0
46 0 0 0 6 0 0

39 0 0 0 9 0
54 0 0 24 0

39 0 0 15
21 0 0

33 0
15





ŝ1

ŝ2

ŝ3

ŝ4

ŝ5

t̂1
t̂2
t̂3


= 120−1



21
18
21
27
24
39
48
24


(3)

The solution is

(−.1412, .1412, .1835, −.1835, 0, 1.9176, 1.5380, 1.6000)′. (4)

Note that ŝ11 = ŝ1, ŝ21 = ŝ2, ŝ32 = ŝ3, ŝ42 = ŝ4, ŝ53 = ŝ5 from the solution in
(19.2) and (19.4). Also note that tj are equal in the two solutions. The second method
is certainly easier than the first but it does not predict values of sires for treatments in
which they had no progeny.

2.2 Sires within breeds

Now we assume that we have a population of sires unique to each breed. Then the
first model of Section 19.2.1 would be useless. The second method illustrated would be
appropriate if sires were unrelated and σ2

s = 3,4,5 for the 3 breeds. If σ2
s were the same

for all breeds G = I5σ
2
s .

3 Random Within Random

Let us illustrate this model by dams within sires. Suppose the model is

yijk = µ+ si + dij + eijk.

V ar

 s
d
e

 =

 Iσ2
s 0 0

0 Iσ2
d 0

0 0 Iσ2
e

 .
6



Let us use the data of Section 19.2.1 but now let t refer to sires and s to dams. Suppose
σ2

e/σ
2
s = 12, σ2

e/σ
2
d = 10. Then the mixed model equations are in (19.5).



23 7 11 5 5 2 3 8 5
19 0 0 5 2 0 0 0

23 0 0 0 3 8 0
17 0 0 0 0 5

15 0 0 0 0
12 0 0 0

13 0 0
18 0

15





µ̂1

ŝ1

ŝ2

ŝ3

d̂1

d̂2

d̂3

d̂4

d̂5



=



37
13
16
8
7
6
7
9
8


(5)

The solution is (l.6869, .0725, -.0536, -.0l89, -.ll98, .2068, .l6l6, -.2259, -.0227)′. Note that∑
ŝi = 0 and that 10 (Sum of d̂ within ith sire)/12 = ŝi.
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Chapter 20
Analysis of Regression Models

C. R. Henderson

1984 - Guelph

A regression model is one in which Zu does not exist, the first column of X is a vector
of 1’s, and all other elements of X are general (not 0’s and 1’s) as in the classification
model. The elements of X other than the first column are commonly called covariates
or independent variables. The latter is not a desirable description since they are not
variables but rather are constants. In hypothetical repeated sampling the value of X
remains constant. In contrast e is a sample from a multivariate population with mean
= 0 and variance = R, often Iσ2

e . Accordingly e varies from one hypothetical sample
to the next. It is usually assumed that the columns of X are linearly independent, that
is, X has full column rank. This should not be taken for granted in all situations, for
it could happen that linear dependencies exist. A more common problem is that near
but not complete dependencies exist. In that case, (X′R−1X)−1 can be quite inaccurate,
and the variance of some or all of the elements of β̂ can be extremely large. Methods for
dealing with this problem are discussed in Section 20.2.

1 Simple Regression Model

The most simple regression model is

yi = µ+ wiγ + ei,

where

X =


1 w1

1 w2
...

...
1 wn

 .

The most simple form of V ar(e) = R is Iσ2
e . Then the BLUE equations are(

n w.
w.

∑
w2

i

)(
µ̂
γ̂

)
=

(
y.∑
wiyi

)
. (1)

To illustrate suppose n=5,

w′ = (6, 5, 3, 4, 2), y′ = (8, 6, 5, 6, 5).

1



The BLUE equations are

1

σ2
e

(
5 20

20 90

)(
µ̂
γ̂

)
=

(
30

127

)
/σ2

e .

The inverse of the coefficient matrix is(
1.8 −.4
−.4 .1

)
σ2

e .

The solution is (3.2, .7).

V ar(µ̂) = 1.8 σ2
e , V ar(γ̂) = .1 σ2

e , Cov(µ̂, γ̂) = −.4 σ2
e .

Some text books describe the model above as

yi = α + (w − w̄.)γ + ei.

The BLUE equations in this case are(
n 0
0

∑
(wi − w̄.)

2

)(
α̂
γ̂

)
=

(
y.∑

(wi − w.)ȳi

)
. (2)

This gives the same solution to γ̂ as (19.1) but µ̂ 6= α̂ except when w̄. = 0. The equations
of (20.2) in our example are

1

σ2
e

(
5 0
0 10

)(
µ̂
γ̂

)
=

(
30
7

)
/σ2

e .

α̂ = 6, γ̂ = .7.

V ar(α̂) = .2σ2
e , V ar(γ̂) = .1σ2

e , Cov(α̂, γ̂) = 0.

It is easy to verify that µ̂ = α̂ − w̄.γ̂.. These two alternative models meet the requirements
of linear equivalence, Section 1.5.

BLUP of a future y say y0 with wi = w0 is

µ̂+ w0γ̂ + ê0 or α̂ + (w0 − w̄)γ̂ + ê0,

where ê0 is BLUP of e0 = 0, with prediction error variance, σ2
e . If w0 = 3, y0 would

be 5.3 in our example. This result assumes that future µ or α) have the same value as in
the population from which the original sample was taken. The prediction error variance
is

(1 3)

(
1.8 −.4
−.4 .1

)(
1
3

)
σ2

e + σ2
e = 1.3 σ2

e .

Also using the second model it is

(1 − 1)

(
.2 0
0 .1

)(
1
−1

)
σ2

e + σ2
e = 1.3 σ2

e

as in the equivalent model.
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2 Multiple Regression Model

In the multiple regression model the first column of X is a vector of 1’s, and there
are 2 or more additional columns of covariates. For example, the second column could
represent age in days and the third column could represent initial weight, while y repre-
sents final weight. Note that in this model the regression on age is asserted to be the same
for every initial weight. Is this a reasonable assumption? Probably it is not. A possible
modification of the model to account for effect of initial weight upon the regression of final
weight on age and for effect of age upon the regression of final weight on initial weight is

yi = µ+ γ1w1 + γ2w2 + γ3w3 + ei,

where w3 = w1w2.

This model implies that the regression coefficient for y on w1 is a simple linear function
of w2 and the regression coefficient for y on w2 is a simple linear function of w1. A model
like this sometimes gives trouble because of the relationship between columns 2 and 3
with column 4 of X . We illustrate with

X =


1 6 8 48
1 5 9 45
1 5 8 40
1 6 7 42
1 7 9 63

 .

The elements of column 4 are the products of the corresponding elements of columns 2
and 3. The coefficient matrix is

5 29 41 238
171 238 1406

339 1970
11662

 . (3)

The inverse of this is
4780.27 −801.54 −548.45 91.73

135.09 91.91 −15.45
63.10 −10.55

1.773

 . (4)

Suppose that we wish to predict y for w1 = w̄1. = 5.8, w̄2 = 8.2, w3 = 47.56 =
(5.8)(8.2). The variance of the error of prediction is

(1 5.8 8.2 47.56)(matrix 20.4)


1

5.8
8.2

47.56

σ2
e + σ2

e = 1.203 σ2
e

3



Suppose we predict y for w1 = 3, w2 = 5, w3 = 15. Then the variance of the error
of prediction is 215.77 σ2

e , a substantial increase. The variance of the prediction error is
extremely vulnerable to departures of wi from w̄i.

Suppose we had not included w3 in the model. Then the inverse of the coefficient
matrix is  33.974 −1.872 −2.795

.359 −.026
.359

 .
The variances of the errors of prediction of the two predictors above would then be 1.20
and 7.23, the second of which is much smaller than when w3 is included. But if w3 6= 0,
the predictor is biased when w3 is not included.

Let us look at the solution when w3 is included and y′ = (6, 4, 8, 7, 5). The solution
is

(157.82, −23.64, −17.36, 2.68).

This is a strange solution that is the consequence of the large elements in (X′X)−1. A
better solution might result if a prior is placed on w3. When the prior is 1, we add 1 to
the lower diagonal element of the coefficient matrix. The resulting solution is

(69.10, −8.69, −7.16, .967).

This type of solution is similar to ridge regression, Hoerl and Kennard (1970). There
is an extensive statistics literature on the problem of ill-behaved X′X. Most solutions
to this problem that have been proposed are (1) biased (shrunken estimation) or (2)
dropping one or more elements of β from the model with either backward or forward
type of elimination, Draper and Smith (1966). See for example a paper by Dempster et
al. (1977) with an extensive list of references. Also Hocking (1976) has many references.

Another type of covariate is involved in fitting polynomials, for example

yi = µ+ xiγ1 + x2
i γ2 + x3

i γ3 + x4
i γ4 + ei.

As in the case when covariates involve products, the sampling variances of predictors are
large when xi departs far from x̄. The numerator mean square with 1 d.f. can be computed
easily. For the ith γi it is

γ̂2
i /c

i+1,

where ci+1 is the i+1 diagonal of the inverse of the coefficient matrix. The numerator
can also be computed by reduction under the full model minus the reduction when γi is
dropped from the solution.
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Chapter 21
Analysis of Covariance Model

C. R. Henderson

1984 - Guelph

A covariance model is one in which X has columns referring to levels of factors or
interactions and one or more columns of covariates. The model may or may not contain
Zu. It usually does not in text book discussions of covariance models, but in animal
breeding applications there would be, or at least should be, a u vector, usually referring
to breeding values.

1 Two Way Fixed Model With Two Covariates

Consider a model

yijk = ri + cj + γij + w1ijkα1 + w2ijkα2 + eijk.

All elements of the model are fixed except for e, which is assumed to have variance, Iσ2
e .

The nijk, yijk., w1ijk., and w2ijk. are as follows

nijk yijk. w1ijk. w2ijk.

1 2 3 1 2 3 1 2 3 1 2 3
1 3 2 1 20 9 4 8 7 2 12 11 4
2 1 3 4 3 20 24 6 10 11 5 15 14
3 2 1 2 13 7 8 7 2 4 9 2 7

and the necessary sums of squares and crossproducts are∑
i

∑
j

∑
k
w2

1ijk = 209,∑
i

∑
j

∑
k
w1ijkw2ijk = 264,∑

i

∑
j

∑
k
w2

2ijk = 373,∑
i

∑
j

∑
k
w1ijkyijk = 321,∑

i

∑
j

∑
k
w2ijkyijk = 433.
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Then the matrix of coefficients of OLS equations are in (21.1). The right hand side vector
is (33, 47, 28, 36, 36, 36, 20, 9, 4, 3, 20, 24, 13, 7, 8, 321, 433)’.

6 0 0 3 2 1 3 2 1 0 0 0 0 0 0 17 27
8 0 1 3 4 0 0 0 1 3 4 0 0 0 27 34

5 2 1 2 0 0 0 0 0 0 2 1 2 13 18
6 0 0 3 0 0 1 0 0 2 0 0 21 26

6 0 0 2 0 0 3 0 0 1 0 19 28
7 0 0 1 0 0 4 0 0 2 17 25

3 0 0 0 0 0 0 0 0 8 12
2 0 0 0 0 0 0 0 7 11

1 0 0 0 0 0 0 2 4
1 0 0 0 0 0 6 5

3 0 0 0 0 10 15
4 0 0 0 11 14

2 0 0 7 9
1 0 2 2

2 4 7
209 264

373



(1)

A g-inverse of the coefficient matrix can be obtained by taking a regular inverse with the
first 6 rows and columns set to 0. The lower 11 × 11 submatrix of the g-inverse is in
(21.2).

10−4



8685 7311 5162 7449 6690 4802 6163
15009 7135 9843 9139 6507 8357

15313 5849 6452 4422 5694
25714 9312 7519 9581

11695 6002 7704
6938 5686

12286

2866 4588 −285 −1148
3832 6309 −264 −1652
2430 4592 226 −1441
5325 5718 2401 −262
3582 5735 −356 −1435
2780 4012 −569 −821
3551 5158 −704 −1072

11869 2290 −654 −281
9016 6 −1151

767 −440
580



(2)
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This gives a solution vector (0, 0, 0, 0, 0, 0, 7.9873, 6.4294, 5.7748, 2.8341, 8.3174, 6.8717,
7.6451, 7.2061, 5.3826, .6813, -.7843). One can test an hypothesis concerning interactions
by subtracting from the reduction under the full model the reduction when γ is dropped
from the model. This tests that all γij − γ̄i.− γ̄.j + γ̄.. are 0. The reduction under the full
model is 652.441. A solution with γ dropped is

(6.5808, 7.2026, 6.5141, 1.4134, 1.4386, 0, .1393, −.5915).

This gives a reduction = 629.353. Then the numerator SS with 4 d.f. is 652.441 - 629.353.

The usual test of hypothesis concerning rows is that all ri + c̄. + γ̄i. are equal. This is
comparable to the test effected by weighted squares of means when there are no covariates.
We could define the test as all ri + c̄. + γ̄i.+ α1w10 + α2w20 are equal, where w10, w20 can
have any values. This is not valid, as shown in Section 16.6, when the regressions are not
homogeneous. To find the numerator SS with 2 d.f. for rows take the matrix

K′ =

(
1 1 1 −1 −1 −1 0 0 0
1 1 1 0 0 0 −1 −1 −1

)
.

K′γ̂ =

(
2.1683
−.0424

)
,

where γ̂ is the solution under the full model with ro, co set to 0. Next compute K′ [first
9 rows and columns of (21.2)] K as

=

(
4.5929 2.2362
2.2362 4.3730

)
.

Then

numerator SS = (2.1683 − .0424)

(
4.5929 2.2362
2.2362 4.3730

)−1 (
2.1683
−.0424

)
= 1.3908.

If we wish to test w1, compute as the numerator SS, with 1 d.f., .6813 (.0767)−1 .6813,
where

α̂1 = .6813, V ar(α̂1) = .0767 σ2
e .

2 Two Way Fixed Model With Missing Subclasses

We found in Section 17.3 that the two way fixed model with interaction and with one
or more missing subclasses precludes obtaining the usual estimates and tests of main
effects and interactions. This is true also, of course, in the covariance model with missing
subclasses for fixed by fixed classifications. We illustrate with the same example as before
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except that the (3,3) subclass is missing. The OLS equations are in (21.3). The right
hand side vector is (33, 47, 20, 36, 36, 28, 20, 9, 4, 3, 20, 24, l3, 7, 0, 307, 406)′. Note
that the equation for γ33 is included even though the subclass is missing.

6 0 0 3 2 1 3 2 1 0 0 0 0 0 0 17 27
8 0 1 3 4 0 0 0 1 3 4 0 0 0 27 34

3 2 1 0 0 0 0 0 0 0 2 1 0 9 11
6 0 0 3 0 0 1 0 0 2 0 0 21 26

6 0 0 2 0 0 3 0 0 1 0 19 28
5 0 0 1 0 0 4 0 0 0 13 18

3 0 0 0 0 0 0 0 0 8 12
2 0 0 0 0 0 0 0 7 11

1 0 0 0 0 0 0 2 4
1 0 0 0 0 0 6 5

3 0 0 0 0 10 15
4 0 0 0 11 14

2 0 0 7 9
1 0 2 2

0 0 0
199 249

348



(3)

We use these equations to estimate a pseudo-variance, σ2
γ to use in biased estimation with

priors on γ. We use Method 3. Reductions and expectations are

y′y = 638, E(y′y) = 17 σ2
e + 17 σ2

γ + q.

Red (full) = 622.111, E() = 10 σ2
e + 17 σ2

γ + q.

Red (r, c, γ) = 599.534, E() = 7 σ2
e + 12.6121 σ2

γ + q.

q = a quadratic in r, c,α.

Solving we get σ̂2
e = 2.26985, σ̂2

γ = 3.59328 or a ratio of .632. Then we add .632 to each
of the diagonal coefficients corresponding to γ equations in (21.3). A resulting solution is

(6.6338, 6.1454, 7.3150, −.3217, .6457, 0, 1.3247, −.7287, −.5960,

−1.7830, 1.1870, .5960, .4583,−.4583, 0, .6179,−.7242)

The resulting biased estimates of ri + cj + γij given w1 = w2 = 0 are 7.6368 6.5509 6.0378
4.0407 7.9781 6.7414
7.4516 7.5024 7.3150

 (4)

The matrix of estimated mean squared errors obtained by pre and post multiplying

4



a g-inverse of the coefficient matrix by

L′ =


1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0

...
...

0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0


is in (21.5).

10, 000−1



8778 7287 5196 8100 6720 4895 6151 3290 2045
13449 6769 8908 8661 6017 7210 4733 2788

13215 4831 5606 4509 4931 2927 7191
22170 9676 7524 9408 4825 1080

11201 6007 7090 4505 2540
6846 5423 3214 3885

11244 4681 5675
10880 6514

45120


(5)

To test that all ri + c̄. + γ̄i. are equal, use the matrix(
1 1 1 −1 −1 −1 0 0 0
1 1 1 0 0 0 −1 −1 −1

)
with (21.4) and (21.5).

Then the numerator SS is

(1.4652 − 2.0434)

(
4.4081 1.6404

9.2400

)−1 (
1.4652

−2.0434

)
= 1.2636.

The test is approximate because the MSE depends upon σ̂2
γ/σ̂

2
e = σ2

γ/σ
2
e . Further, the

numerator is not distributed as χ2.

3 Covariates All Equal At The Same Level Of A Fac-

tor

In some applications every wij = wi in a one-way covariate model,

yij = µ+ ti + wijγ + eij

with all wij = wi. For example, ti might represent an animal in which there are several
observations, yij, but the covariate is measured only once. This idea can be extended to
multiple classifications. When the factor associated with the constant covariate is fixed,
estimability problems exist, Henderson and Henderson (1979). In the one way case ti− tj
is not estimable and neither is γ.
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We illustrate with a one-way case in which ni = (3,2,4), wi = (2,4,5), ȳi. = (6,5,10).
The OLS equations are

9 3 2 4 34
3 3 0 0 6
2 0 2 0 8
4 0 0 4 20

34 6 8 20 144




µ
t1
t2
t3
γ

 =


68
18
10
40

276

 . (6)

Note that equations 2,3,4 sum to equation 1 and also (2 4 5) times these equations gives
the last equation. Accordingly the coefficient matrix has rank only 3, the same as if there
were no covariate. A solution is (0,6,5,10,0).

If t is random, there is no problem of estimability for then we need only to look at
the rank of (

9 34
34 144

)
,

and that is 2. Consequently µ and γ are both estimable, and of course t is predictable. Let
us estimate σ2

t and σ2
e by Method 3 under the assumption V ar(t) = Iσ2

t , V ar(e) = Iσ2
e .

For this we need y’y, reduction under the full model, and Red (µ, γ).

y′y = 601, E(y′y) = 9 σ2
e + 9 σ2

t + q.

Red (full) = 558, E() = 3 σ2
e + 9 σ2

t + q.

Red (µ, γ) = 537.257, E() = 2 σ2
e + 6.6 σ2

t + q.

q is a quadratic in µ, γ. This gives estimates σ̂2
e = 7.167, σ̂2

t = 5.657 or a ratio of 1.27.

Let us use 1 as a prior value of σ2
e/σ

2
t and estimate σ2

t by MIVQUE given that σ2
e

= 7.167. We solve for t̂ having added 1 to the diagonal coefficients of equations 2,3,4 of
(21.6). This gives an inverse,

4.24370 −1.63866 −.08403 .72269 −1.02941
.94958 .15126 −.10084 .35294

.54622 .30252 −.05882
.79832 −.29412

.27941

 . (7)

The solution is (3.02521, .55462, -1.66387, 1.10924, 1.11765). From this t̂′t̂ = 4.30648.
To find its expectation we compute

tr(Ct [matrix (21.6)] C
′

t) = tr

 .01483 −.04449 .02966
.13347 −.08898

.05932

 = .20761,

6



which is the coefficient of σ2
e in E(t̂′t̂). Ct is the submatrix composed of rows 2-4 of

(21.7).

tr(CtW
′ZtZ

′

tWC
′

t) = tr

 .03559 −.10677 .07118
.32032 −.21354

.14236

 = .49827,

the coefficient of σ2
t in E(t̂′t̂). W′Zt is the submatrix composed of cols. 2-4 of (21.6).

This gives σ̂2
t = 5.657 or σ̂2

e/σ̂
2
t = 1.27. If we do another MIVQUE estimation of σ2

t , given
σ2
e = 7.167 using the ratio, 1.27, the same estimate of σ2

t is obtained. Accordingly we
have REML of σ2

t , given σ2
e . Notice also that this is the Method 3 estimate.

If t were actually fixed, but we use a pseudo-variance in the mixed model equations
we obtain biased estimators. Using σ̂2

e/σ̂
2
t = 1.27,

µ̂+ t̂i = (3.53, 1.48, 4.04).

µ̂+ t̂i + wiγ̂. = (5.78, 5.98, 9.67).

Contrast this last with the corresponding OLS estimates of (6,5,10).

4 Random Regressions

It is reasonable to assume that regression coefficients are random in some models. For
example, suppose we have a model,

yij = µ+ ci + wijγi + eij,

where yij is a yield observation on the jth day for the ith cow, wij is the day, and γi is a
regression coefficient, linear slope of yield on time. Linearity is a reasonable assumption
for a relatively short period following peak production. Further, it is obvious that γi is
different from cow to cow, and if cows are random, γi is also random. Consequently we
should make use of this assumption. The following example illustrates the method. We
have 4 random cows with 3,5,6,4 observations respectively. The OLS equations are in
(21.8). 

18 3 5 6 4 10 30 19 26
3 0 0 0 10 0 0 0

5 0 0 0 30 0 0
6 0 0 0 19 0

4 0 0 0 26
38 0 0 0

190 0 0
67 0

182



 µo

co

γo

 =



90
14
18
26
32
51

117
90

216


(8)

7



10 = w1.,

30 = w2., etc.

38 =
∑

j
w2
ij, etc.

51 =
∑

j
wijyij, etc.

First let us estimate σ2
e , σ

2
c , σ

2
γ by Method 3. The necessary reductions and their expec-

tations are

E


y′y
Red (full)
Red (µ, t)
Red (µ,γ)

 =


18 18 477
8 18 477
4 18 442.5
5 16.9031 477


 σ2

e

σ2
c

σ2
γ

+


1
1
1
1

 18 µ2.

The reductions are (538, 524.4485, 498.8, 519.6894). This gives estimates σ̂2
e = 1.3552,

σ̂2
c = .6324, σ̂2

γ = .5863. Using the resulting ratios, σ̂2
e/σ̂

2
c = 2.143 and σ̂2

e/σ̂
2
γ = 2.311, the

mixed model solution is

(2.02339, .11180, −.36513, −.09307,

.34639, .73548, .34970, .76934, .83764).

Covariance models are discussed also in Chapter 16.
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Chapter 22
Animal Model, Single Records

C. R. Henderson

1984 - Guelph

We shall describe a number of different genetic models and present methods for
BLUE, BLUP, and estimation of variance and covariance components. The simplest
situation is one in which we have only one trait of concern, we assume an additive genetic
model, and no animal has more than a single record on this trait. The scalar model, that
is, the model for an individual record, is

yi = x
′

iβ + z
′

iu + ai + ei.

β represents fixed effects with xi relating the record on the ith animal to this vector.

u represents random effects other than breeding values and zi relates this vector to yi.

ai is the additive genetic value of the ith animal.

ei is a random error associated with the individual record.

The vector representation of the entire set of records is

y = Xβ + Zu + Zaa + e. (1)

If a represents only those animals with records, Za = I. Otherwise it is an identity matrix
with rows deleted that correspond to animals without records.

V ar(u) = G.

V ar(a) = Aσ2
a.

V ar(e) = R, usually Iσ2
e .

Cov(u, a′) = 0,

Cov(u, e′) = 0,

Cov(a, e′) = 0.

If Za 6= I, the mixed model equations are X′R−1X X′R−1Z X′R−1Za

Z′R−1X Z′R−1Z + G−1 Z′R−1Za

Z
′
aR
−1X Z

′
aR
−1Z Z

′
aR
−1Za + A−1/σ2

a


 βo

û
â

 =

 X′R−1y
Z′R−1y
Z

′
aR
−1y

 . (2)

1



If Za = I, (22.2) simplifies to X′R−1X X′R−1Z X′R−1

Z′R−1X Z′R−1Z + G−1 Z′R−1

R−1X R−1Z R−1 + A−1/σ2
a


 βo

û
â

 =

 X′R−1y
Z′R−1y
R−1y

 . (3)

If R = Iσ2
e (22.3) simplifies further to X′X X′Z X′

Z′X Z′Z + G−1σ2
e Z′

X Z I + A−1σ2
e/σ

2
a


 βo

û
â

 =

 X′y
Z′y
y

 . (4)

If the number of animals is large, one should, of course, use Henderson’s method (1976) for
computing A−1. Because this method requires using a “base” population of non-inbred,
unrelated animals, some of these probably do not have records. Also we may wish to
evaluate some progeny that have not yet made a record. Both of these circumstances will
result in Za 6= I, but â will contain predicted breeding values of these animals without
records.

1 Example With Dam-Daughter Pairs

We illustrate the model above with 5 pairs of dams and daughters, the dams’ records being
made in period 1 and the daughters’ in period 2. Ordering the records within periods and
with record 1 being made by the dam of the individual making record 6, etc.

X′ =

(
1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1

)
,

Za = I,

y′ = [5, 4, 3, 2, 6, 6, 7, 3, 5, 4].

A =

(
I5 .5I5

.5I5 I5

)
,

R = I10σ
2
e .

2



The sires and dams are all unrelated. We write the mixed model equations with σ2
e/σ

2
a

assumed to be 5. These equations are

5 0 1 1 1 1 1 0 0 0 0 0
0 5 0 0 0 0 0 1 1 1 1 1
1 0 23

3
I5

−10
3

I5

1 0
1 0
1 0
1 0
0 1
0 1
0 1 −10

3
I5

23
3

I5

0 1
0 1



 p1

p2

a

 =



20
25
5
4
3
2
6
6
7
3
5
4



. (5)

The inverse of the coefficient matrix is



.24 .02 −.04 −.04 −.04 −.04 −.04 −.02 −.02 −.02 −.02 −.02

.02 .24 −.02 −.02 −.02 −.02 −.02 −.04 −.04 −.04 −.04 −.04
−.04 −.02
−.04 −.02
−.04 −.02 P Q
−.04 −.02
−.04 −.02
−.02 −.04
−.02 −.04
−.02 −.04 Q P
−.02 −.04
−.02 −.04



(6)

P is a 5× 5 matrix with .16867 in diagonals and .00783 in all off-diagonals. Q is a 5× 5
matrix with .07594 in diagonals and .00601 in off-diagonals. The solution is (4, 5, .23077,
.13986, -.30070, -.32168, .25175, .23077, .32168, -.39161, -.13986, -.20298).

Let us estimate σ2
e , σ

2
a by MIVQUE using the prior on σ2

e/σ
2
a = 5 as we did in

computing BLUP. The quadratics needed are

ê′ê and â′A−1â.

ê = y − (X Za)

(
p̂
â

)
= (.76923, −.13986, −.69930, −1.67832, 1.74825,

.76923, 1.67832, −1.60839, .13986,−.97902)′.

3



ê′ê = 13.94689.

V ar(ê) = (I−WCW′)(I−WCW′) σ2
e

+ (I−WCW′)A(I−WCW′) σ2
a.

W = (X Za),

C = matrix of (22.6).

E(ê′ê) = tr(V ar(ê)) = 5.67265 σ2
e + 5.20319 σ2

a

â′ = CaW
′y,

where Ca = last 10 rows of C.

V ar(â) = CaW
′WC

′

a σ
2
e + CaW

′AWC
′

a σ
2
a.

E(â′A−1â) = tr(A−1 V ar(â)) = .20813 σ2
e + .24608 σ2

a.

â′A−1â = .53929.

Using these quadratics and solving for σ̂2
e , σ̂

2
a we obtain σ̂2

e = 2.00, σ̂2
a = .50.

The same estimates are obtained for any prior used for σ2
e/σ

2
a. This is a consequence

of the fact that we have a balanced design. Therefore the estimates are truly BQUE and
also are REML. Further the traditional method, daughter-dam regression, gives the same
estimates. These are

σ̂2
a = 2 times regression of daughter on dam.

σ̂2
e = within period mean square − σ̂2

a.

For unbalanced data MIVQUE is not invariant to the prior used, and daughter-dam
regression is neither MIVQUE nor REML. We illustrate by assuming that y10 was not
observed. With σ2

e/σ
2
a assumed equal to 2 we obtain

ê′ê = 11.99524 with expectation = 3.37891 σ2
e + 2.90355 σ2

a.

â′A−1a′ = 2.79712 with expectation = .758125 σ2
e + .791316 σ2

a.

This gives

σ̂2
a = .75619,

σ̂2
e = 2.90022.

When σ2
e/σ

2
a is assumed equal to 5, the results are

ê′ê = 16.83398 with expectation 4.9865 σ2
e + 4.6311 σ2

a,

â′A−1â′ = .66973 with expectation .191075 σ2
e + .214215 σ2

a.

Then

σ̂2
a = .67132,

σ̂2
e = 2.7524.
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Chapter 23
Sire Model, Single Records

C. R. Henderson

1984 - Guelph

A simple sire model is one in which sires, possibly related, are mated to a random
sample of unrelated dams, no dam has more than one progeny with a record, and each
progeny produces one record. A scalar model for this is

yij = x
′

ijβ + si + z
′

iu + eij. (1)

β represents fixed effects with xij relating the jth progeny of the ith sire to these effects.

si represents the sire effect on the progeny record.

u represents other random factors with zij relating these to the ijth progeny record.

eij is a random “error”.

The vector representation is

y = Xβ + Zss + Zu + e. (2)

V ar(s) = Aσ2
s , where A is the numerator relationship of the sires, and σ2

s is the sire
variance in the “base” population. If the sires comprise a random sample from this
population σ2

s = 1
4

additive genetic variance. Some columns of Zs will be null if s contains
sires with no progeny, as will usually be the case if the simple method for computation of
A−1 requiring base population animals, is used.

V ar(u) = G, Cov(s,u′) = 0.

V ar(e) = R, usually = Iσ2
e .

Cov(s, e′) = 0, Cov(u, e′) = 0.

If sires and dams are truly random,

Iσ2
e = .75I (additive genetic variance)

+ I (environmental variance).

1



With this model the mixed model equations are X′R−1X X′R−1Zs X′R−1Z
Z

′
sR
−1X Z

′
sR
−1Zs + A−1σ−2

s Z
′
sR
−1Z

Z′R−1X Z′R−1Zs Z′R−1Z + G−1


 βo

ŝ
û

 =

 X′R−1y
Z

′
sR
−1y

Z′R−1y

 . (3)

If R = Iσ2
e , (23.3) simplifies to (23.4) X′X X′Zs X′Z

Z
′
sX Z

′
sZs + A−1σ2

e/σ
2
s Z

′
sZ

Z′X Z′Zs Z′Z + σ2
eG
−1


 βo

ŝ
û

 =

 X′y
Z

′
sy

Z′y

 . (4)

We illustrate this model with the following data.

nij yij.

Herds Herds
Sires 1 2 3 4 1 2 3 4

1 3 5 0 0 25 34 – –
2 0 8 4 0 – 74 31 –
3 4 2 6 8 23 11 43 73

The model assumed is

yijk = si + hj + eijk.

V ar(s) = Aσ2
e/12,

V ar(e) = Iσ2
e .

A =

 1.0 .5 .5
1.0 .25

1.0

 .
h is fixed.

The ordinary LS equations are

8 0 0 3 5 0 0
12 0 0 8 4 0

20 4 2 6 8
7 0 0 0

15 0 0
10 0

8



(
ŝ

ĥ

)
=



59
105
150
48

119
74
73


. (5)

2



The mixed model equations are

28 −8 −8 3 5 0 0
28 0 0 8 4 0

36 4 2 6 8
7 0 0 0

15 0 0
10 0

8



(
ŝ

ĥ

)
=



59
105
150
48

119
74
73


. (6)

The inverse of the matrix of (23.6) is

.0764 .0436 .0432 −.0574 −.0545 −.0434 −.0432

.0436 .0712 .0320 −.0370 −.0568 −.0477 −.0320

.0432 .0320 .0714 −.0593 −.0410 −.0556 −.0714
−.0574 −.0370 −.0593 .2014 .0468 .0504 .0593
−.0545 −.0568 −.0410 .0468 .1206 .0473 .0410
−.0434 −.0477 −.0556 .0504 .0473 .1524 .0556
−.0432 −.0320 −.0714 .0593 .0410 .0556 .1964


. (7)

The solution is

ŝ′ = (−.036661, .453353,−.435022),

ĥ′ = (7.121439, 7.761769, 7.479672, 9.560022).

Let us estimate σ2
e from the residual mean square using OLS reduction, and σ2

e by
MIVQUE type computations. A solution to the OLS equations is

[10.14097, 11.51238, 9.12500, −2.70328, −2.80359, −2.67995, 0]

This gives a reduction in SS of 2514.166.

y′y = 2922.

Then σ̂2
e = (2922 - 2514.166)/(40-6) = 11.995. MIVQUE requires computation of ŝ′A−1ŝ

and equating to its expectation.

A−1 =
1

3

 5 −2 −2
−2 4 0
−2 0 4

 .
ŝ′A−1ŝ = .529500.

Var (RHS of mixed model equations) = [Matrix (23.5)] σ2
e +

8 0 0
0 12 0
0 0 20
3 0 4
5 8 2
0 4 6
0 0 8


A

 8 0 0 3 5 0 0
0 12 0 0 8 4 0
0 0 20 4 2 6 8

 σ2
s .

3



The second term of this is

64 48 80 40 80 40 32
144 60 30 132 66 24

400 110 130 140 160
37 56 43 44

151 83 5
64 56

64


σ2

s . (8)

V ar(ŝ) = Cs [matrix (23.8)] C
′

s σ
2
s + Cs [matrix (23.5)] C

′

s σ
2
e ,

where Cs = first 3 rows of (23.7).

V ar(ŝ) =

 .005492 −.001451 −.001295
.007677 −.006952

.007599

 σ2
e

+

 .017338 −.005622 −.003047
.053481 −.050670

.052193

 σ2
s . (9)

Then E(ŝ′A−1ŝ) = tr(A−1 [matrix (23.9)]) = .033184 σ2
e + .181355 σ2

s . With these results
we solve for σ̂2

s and this is .7249 using estimated σ̂2
e as 11.995. This is an approximate

MIVQUE solution because σ̂2
e was computed from the residual of ordinary least squares

reduction rather than by MIVQUE.

4



Chapter 24
Animal Model, Repeated Records

C. R. Henderson

1984 - Guelph

In this chapter we deal with a one trait, repeated records model that has been ex-
tensively used in animal breeding, and particularly in lactation studies with dairy cattle.
The assumptions of this model are not entirely realistic, but may be an adequate approx-
imation. The scalar model is

yij = x
′

ijβ + z
′

iju + ci + eij. (1)

β represents fixed effects, and x
′
ij relates the jth record of the ith animal to elements of

β .

u represents other random effects, and z
′
ij relates the record to them.

ci is a “cow” effect. It represents both genetic merit for production and permanent
environmental effects.

eij is a random “error” associated with the individual record.

The vector representation is

y = Xβ + Zu + Zcc + e. (2)

V ar(u) = G,

V ar(c) = I σ2
c if cows are unrelated, with σ2

c = σ2
a + σ2

p

= A σ2
a + I σ2

p if cows are related,

where σ2
p is the variance of permanent environmental effects, and if there are non-additive

genetic effects, it also includes their variances. In that case I σ2
p is only approximate.

V ar(e) = I σ2
e .

Cov(u, a′), Cov(u, e′), and Cov(a, e′) are all null. For the related cow model let

Zcc = Zca + Zcp. (3)

1



It is advantageous to use this latter model in setting up the mixed model equations, for
then the simple method for computing A−1 can be used. There appears to be no simple
method for computing directly the inverse of V ar(c).

X′X X′Z X′Zc X′Zc

Z′X Z′Z + σ2
eG
−1 Z′Zc Z′Zc

Z
′
cX Z

′
cZ Z

′
cZc + A−1 σ

2
e

σ2
a

Z
′
cZc

Z
′
cX Z

′
cZ Z

′
cZc Z

′
cZc + Iσ

2
e

σ2
p




βo

û
â
p̂

 =


X′y
Z′y
Z

′
cy

Z
′
cy

 (4)

These equations are easy to write provided G−1 is easy to compute, G being diagonal, e.g.
as is usually the case. A−1 can be computed by the easy method. Further Z

′
cZc + Iσ2

e/σ
2
p

is diagonal, so p̂ can be “absorbed” easily. In fact, one would not need to write the p̂
equations. See Henderson (1975b). Also Z′Z+σ2

eG
−1 is sometimes diagonal and therefore

û can be absorbed easily. If predictions of breeding values are of primary interest, â is
what is wanted. If, in addition, predictions of real producing abilities are wanted, one
needs p̂. Note that by subtracting the 4th equation of (24.4) from the 3rd we obtain

A−1
(
σ2
e/σ

2
a

)
â− I

(
σ2
e/σ

2
p

)
p̂ = 0.

Consequently

p̂ =
(
σ2
p/σ

2
a

)
A−1â, (5)

and predictions of real producing abilities are(
I +

(
σ2
p/σ

2
a

)
A−1

)
â. (6)

Note that under the model used in this chapter

V ar(yij) = V ar(yik), j 6= k.

Cov(yij, yik) is identical for all pairs of j 6= k. This is not necessarily a realistic model. If
we wish a more general model, probably the most logical and easiest one to analyze is that
which treats different lactations as separate traits, the methods for which are described
in Chapter 26.

We illustrate the simple repeatability model with the following example. Four animals
produced records as follows in treatments 1,2,3. The model is

yij = ti + aj + pj + eij.

Animals
Treatment 1 2 3 4

1 5 3 - 4
2 6 5 7 -
3 8 - 9 -

2



The relationship matrix of the 4 animals is
1 .5 .5 .5

1 .25 .125
1 .5

1

 .

V ar(a) = .25 Aσ2
y,

V ar(p) = .2 Iσ2
y ,

Iσ2
e = .55 Iσ2

y .

These values correspond to h2 = .25 and r = .45, where r denotes repeatability. The OLS
equations are 

3 0 0 1 1 0 1 1 1 0 1
3 0 1 1 1 0 1 1 1 0

2 1 0 1 0 1 0 1 0
3 0 0 0 3 0 0 0

2 0 0 0 2 0 0
2 0 0 0 2 0

1 0 0 0 1
3 0 0 0

2 0 0
2 0

1



 t
a
p

 =



12
18
17
19
8

16
4

19
8

16
4



. (7)

Note that the last 4 equations are identical to equations 4-7. Thus a and p are confounded
in a fixed model. Now we add 2.2 A−1 to the 4-7 diagonal block of coefficients and 2.75
I to the 8-11 diagonal block of coefficients. The resulting coefficient matrix is in (24.8).
2.2 = .55/.25, and 2.75 = .55/.2.

3.0 0 0 1.0 1.0 0 1.0 1.0 1.0 0 1.0
3.0 0 1.0 1.0 1.0 0 1.0 1.0 1.0 0

2.0 1.0 0 1.0 0 1.0 0 1.0 0
7.2581 −1.7032 −.9935 −1.4194 3.0 0 0 0

5.0280 −.1892 .5677 0 2.0 0 0
5.3118 −1.1355 0 0 2.0 0

4.4065 0 0 0 1.0
5.75 0 0 0

4.75 0 0
4.75 0

3.75



(8)

3



The inverse of (24.8) (times 1000) is

693 325 313 −280 −231 −217 −247 −85 −117 −43 −119
709 384 −288 −246 −266 −195 −96 −114 −118 −34

943 −306 −205 −303 −215 −126 −60 −152 −26
414 227 236 225 −64 24 26 15

390 153 107 0 −64 31 33
410 211 14 37 −53 2

406 −3 48 −2 −42
261 38 41 24

286 21 18
290 12

310



(9)

The solution is

t̂′ = (4.123 5.952 8.133),

â′ = (.065, −.263, .280, .113),

p̂′ = (.104, −.326, .285, −.063).

We next estimate σ2
e , σ

2
a, σ

2
p, by MIVQUE with the priors that were used in the above

mixed model solution. The Z
′
cW submatrix for both a and p is

1 1 1 3 0 0 0 3 0 0 0
1 1 0 0 2 0 0 0 2 0 0
0 1 1 0 0 2 0 0 0 2 0
1 0 0 0 0 0 1 0 0 0 1

 . (10)

The variance of the right hand sides of the mixed model equations contains
W′ZcAZ

′
cW σ2

a, where W = (X Z Zc Zc). The matrix of coefficients of σ2
a is in (24.11).

V ar(r) also contains W′ZcZ
′
cW σ2

p and this matrix is in (24.12). The coefficients of σ2
e

are in (24.7).

5.25 4.88 3.25 6.0 3.25 2.5 1.65 6.0 3.25 2.5 1.63
5.5 3.75 6.0 3.5 3.5 1.13 6.0 3.5 3.5 1.13

3.0 4.5 1.5 3.0 1.0 4.5 1.5 3.0 1.0
9.0 3.0 3.0 1.5 9.0 3.0 3.0 1.5

4.0 1.0 .25 3.0 4.0 1.0 .25
4.0 1.0 3.0 1.0 4.0 1.0

1.0 1.5 .25 1.0 1.0
9.0 3.0 3.0 1.5

4.0 1.0 .25
4.0 1.0

1.0



(11)

4





3 2 1 3 2 0 1 3 2 0 1
3 2 3 2 2 0 3 2 2 0

2 3 0 2 0 3 0 2 0
9 0 0 0 9 0 0 0

4 0 0 0 4 0 0
4 0 0 0 4 0

1 0 0 0 1
9 0 0 0

4 0 0
4 0

1



(12)

Now V ar(â) contains Ca(V ar(r))C′aσ
2
a, where Ca is the matrix formed by rows 4-9 of the

matrix in (24.9). Then Ca(V ar(r))C
′
a is

.0168 .0012 −.0061 .0012
.0423 −.0266 −.0323

.0236 .0160
.0274

 σ2
a (13)

+


.0421 −.0019 −.0099 .0050

.0460 −.0298 −.0342
.0331 .0136

.0310

 σ2
p (14)

+


.0172 .0001 −.0022 −.0004

.0289 −.0161 −.0234
.0219 .0042

.0252

 σ2
e . (15)

We need â′A−1â′ = .2067. The expectation of this is

trA−1 [matrix (24.13) + matrix (24.14) + matrix (24.15)]

= .1336 σ2
e + .1423 σ2

a + .2216 σ2
p.

To find V ar(p̂) we use Cp, the last 6 rows of (24.9).

V ar(p̂) =


.0429 −.0135 −.0223 −.0071

.0455 −.0154 −.0166
.0337 .0040

.0197

 σ2
a (16)

+


.1078 −.0423 −.0466 −.0189

.0625 −.0106 −.0096
.0586 −.0014

.0298

 σ2
p (17)
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+


.0441 −.0167 −.0139 −.0135

.0342 −.0101 −.0074
.0374 −.0133

.0341

 σ2
e . (18)

We need p̂′p̂ = .2024 with expectation

tr[matrix (24.16) + matrix (24.17) + matrix (24.18)]

= .1498 σ2
e + .1419 σ2

a + .2588 σ2
p.

We need ê′ê.
ê = [I−WCW′]y,

where C = matrix (24.9), and I−WCW′ is

.4911 −.2690 −.2221 −.1217 .1183 .0034 −.0626 .0626
.4548 −.1858 .1113 −.1649 .0536 .0289 −.0289

.4079 .0104 .0466 −.0570 .0337 −.0337
.5122 −.2548 −.2574 −.1152 .1152

.4620 −.2073 −.0238 .0238
.4647 .1390 −.1390

.3729 −.3729
.3729


(19)

Then

ê = [.7078, −.5341, −.1736, −.1205, −.3624, .4829, −.3017, .3017].

ê′ê = 1.3774.

V ar(ê) = (I−WCW′) V ar(y) (I−WCW′),

V ar(y) = ZcAZ
′

c σ
2
a + ZcZ

′

c σ
2
p + I σ2

e .

=



1 .5 .5 1. .5 .5 1. .5
1. .125 .5 1. .25 .5 .25

1. .5 .125 .5 .5 .5
1. .5 .5 1. .5

1. .25 .5 .25
1. .5 1.

1. .5
1.


σ2
a

+



1 0 0 1 0 0 1 0
1 0 0 1 0 0 0

1 0 0 0 0 0
1 0 0 1 0

1 0 0 0
1 0 1

1 0
1


σ2
p + Iσ2

e .
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Then the diagonals of V ar(ê) are

(.0651, .1047, .1491, .0493, .0918, .0916, .0475, .0475) σ2
a

+ (.1705, .1358, .2257, .1167, .1498, .1462, .0940, .0940) σ2
p

+ [diagonals of (24.19)] σ2
e .

Then E(ê′ê) is the sum of these diagonals

= .6465 σ2
a + 1.1327 σ2

p + 3.5385 σ2
e .
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Chapter 25
Sire Model, Repeated Records

C. R. Henderson

1984 - Guelph

This chapter is a combination of those of Chapters 23 and 24. That is, we are
concerned with progeny testing of sires, but some progeny have more than one record.
The scalar model is

yijk = x′ijkβ + z′ijku + si + pij + eijk.

u represents random factors other than s and p. It is assumed that all dams are unrelated
and all progeny are non-inbred. Under an additive genetic model the covariance between
any record on one progeny and any record on another progeny of the same sire is σ2

s =
1
4
h2 σ2

y if sires are a random sample from the population. The covariance between
any pair of records on the same progeny is σ2

s + σ2
p = rσ2

y . If sires are unselected,
σ2

p = (r − 1
4
h2)σ2

y , σ
2
e = (1− r)σ2

y, σ
2
s = 1

4
h2σ2

y.

In vector notation the model is

y = Xβ + Zu + Zss + Zpp + e.

V ar(s) = A σ2
s , V ar(p) = I σ2

p, V ar(e) = I σ2
e .

With field data one might eliminate progeny that do not have a first record in order to
reduce bias due to culling, which is usually more intense on first than on later records.
Further, if a cow changes herds, the records only in the first herd might be used. In this
case useful computing strategies can be employed. The data can be entered by herds, and
p easily absorbed because Z

′
pZp + Iσ2

e/σ
2
p is diagonal. Once this has been done, fixed

effects pertinent to that particular herd can be absorbed. These methods are described in
detail in Ufford et al. (1979). They are illustrated also in a simple example which follows.

We have a model in which the fixed effects are herd-years. The observations are
displayed in the following table.
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Herd - years
Sires Progeny 11 12 13 21 22 23 24

1 1 5 6 4
2 5 8 -
3 - 9 4
4 5 6 7 3
5 4 5 - -
6 - 4 3 -
7 - - 2 8

2 8 7 6 -
9 - 5 4
10 - 9 -
11 - - 4
12 3 7 6 -
13 - 5 6 8
14 - - 5 4

We assume σ2
e/σ

2
s = 8.8, σ2

e/σ
2
p = 1.41935. These correspond to unselected sires,

h2 = .25, r = .45. Further, we assume that A for the 2 sires is(
1 .25
.25 1

)
.

Ordering the solution vector hy, s, p the matrix of coefficients of OLS equations is in
(25.1), and the right hand side vector is (17, 43, 16, 12, 27, 29, 23, 88, 79, 15, 13, 13, 21,
9, 7, 10, 13, 9, 9, 4, 16, 19, 9)′.

X′X = diag (3, 6, 4, 3, 5, 6, 4)

Z
′

sZs = diag (17, 14)

Z
′

pZp = diag (3, 2, 2, 4, 2, 2, 2, 2, 2, 1, 1, 3, 3, 2)

Z
′

sX =

(
2 3 2 2 3 3 2
1 3 2 1 2 3 2

)

Z
′

sZp =

(
3 2 2 4 2 2 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 2 1 1 3 3 2

)
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Z
′

pX =



1 1 1 0 0 0 0
1 1 0 0 0 0 0
0 1 1 0 0 0 0
0 0 0 1 1 1 1
0 0 0 1 1 0 0
0 0 0 0 1 1 0
0 0 0 0 0 1 1
1 1 0 0 0 0 0
0 1 1 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 1 1 0
0 0 0 0 1 1 1
0 0 0 0 0 1 1



(1)

Modifying these by adding 8.8 A−1 and 1.41935 I to appropriate submatrices of the
coefficient matrix, the BLUP solution is

ĥy = [5.83397, 7.14937, 4.18706, 3.76589, 5.29825, 4.83644, 5.64274]′,

ŝ = [−.06397, .06397]′,

p̂ = [−.44769, .04229, .52394, .31601, .01866,−.87933,−.10272,

−.03255,−.72072, .73848,−.10376, .43162, .68577,−.47001]′.

If one absorbs p in the mixed model equations, we obtain

2.189 −.811 −.226 0 0 0 0 .736 .415
4.191 −.811 0 0 0 0 1.151 1.417

2.775 0 0 0 0 .736 1.002
2.297 −.703 −.411 −.184 .677 .321

3.778 −.930 −.411 1.092 .642
4.486 −.996 1.092 1.057

3.004 .677 .736
15.549 −2.347

14.978



(
ĥy
ŝ

)
=



6.002
21.848
4.518
1.872

10.526
9.602
9.269

31.902
31.735


.
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The solution for ĥy and ŝ are the same as before.

If one chooses, and this would be mandatory in large sets of data, ĥy can be absorbed
herd by herd. Note that the coefficients of ĥy are in block diagonal form. When ĥy is
absorbed, the equations obtained are(

12.26353 −5.222353
−5.22353 12.26353

)(
ŝ1

ŝ2

)
=

(
−1.1870

1.1870

)
.

The solution is approximately the same for sires as before, the approximation being due
to rounding errors.

4



Chapter 26
Animal Model, Multiple Traits

C. R. Henderson

1984 - Guelph

1 No Missing Data

In this chapter we deal with the same model as in Chapter 22 except now there are 2 or
more traits. First we shall discuss the simple situation in which every trait is observed
on every animal. There are n animals and t traits. Therefore the record vector has nt
elements, which we denote by

y′ = [y′1 y′2 . . .y′t].

y′1 is the vector of n records on trait 1, etc. Let the model be
y1

y2
...
yt

 =


X1 0 . . . 0

0 X2 . . . 0
...

...
...

0 0 . . . Xt




β1

β2
...

βt

+


I 0 . . . 0
0 I . . . 0
...

...
...

0 0 . . . I




a1

a2
...
at

+


e1

e2
...
et

 . (1)

Accordingly the model for records on the first trait is

y1 = X1β1 + a1 + e1, etc. (2)

Every Xi has n rows and pi columns, the latter corresponding to βi with pi elements.
Every I has order n x n, and every ei has n elements.

V ar


a1

a2
...
at

 =


Ag11 Ag12 . . . Ag1t

Ag12 Ag22 . . . Ag2t
...

...
...

Ag1t Ag2t . . . Agtt

 = G. (3)

1



gij represents the elements of the additive genetic variance-covariance matrix in a non-
inbred population.

V ar


e1

e2
...
et

 =


Ir11 Ir12 . . . Ir1t

Ir12 Ir22 . . . Ir2t
...

...
...

Ir1t Ir2t . . . Irtt

 = R. (4)

rij represents the elements of the environmental variance-covariance matrix. Then

G−1 =


A−1g11 . . . A−1g1t

...
...

A−1g1t . . . A−1gtt

 . (5)

gij are the elements of the inverse of the additive genetic variance covariance matrix.

R−1 =


Ir11 . . . Ir1t

...
...

Ir1t . . . Irtt

 . (6)

rij are the elements of the inverse of the environmental variance-covariance matrix. Now
the GLS equations regarding a fixed are

X′1X1r
11 . . . X′1Xtr

1t X′1r
11 . . . X′1r

1t

...
...

...
...

X′tX1r
1t . . . X′tXtr

tt X′tr
1t . . . X′tr

tt

X1r
11 . . . Xtr

1t Ir11 . . . Ir1t

...
...

...
...

X1r
1t . . . Xtr

tt Ir1t . . . Irtt





βo
1

...
βo

t

â1
...
ât



=



X′1y1r
11 + . . . + X′1ytr

1t

...
...

X′ty1r
1t + . . . + X′tytr

tt

y1r
11 + . . . + ytr

1t

...
...

y1r
1t + . . . + ytr

tt


. (7)

The mixed model equations are formed by adding (26.5) to the lower t2 blocks of (26.7).

If we wish to estimate the gij and rij by MIVQUE we take prior values of gij and rij

for the mixed model equations and solve. We find that quadratics in â and ê needed for
MIVQUE are

â′iA
−1âj for i = l, . . . , t; j = i, . . . , t. (8)

ê′iêj for i = l, . . . , t; j = i, . . . , t. (9)
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To obtain the expectations of (26.8) we first compute the variance-covariance matrix of
the right hand sides of (26.7). This will consist of t(t − 1)/2 matrices each of the same
order as the matrix of (26.7) multiplied by an element of gij. It will also consist of the
same number of matrices with the same order multiplied by an element of rij. The matrix
for gkk is

X′1AX1r
1kr1k . . . X′1AXtr

1krtk X′1Ar1kr1k . . . X′1Ar1krtk

...
...

...
...

X′tAX1r
tkr1k . . . X′tAXtr

tkrtk X′tArtkr1k . . . X′tArtkrtk

AX1r
1kr1k . . . AXtr

1krtk Ar1kr1k . . . Ar1krtk

...
...

...
...

AX1r
tkr1k . . . AXtr

tkrtk Artkr1k . . . Artkrtk


(10)

The ijth sub-block of the upper left set of t× t blocks is X′iAXjr
ikrjk. The sub-block of

the upper right set of t × t blocks is X′iArikrjk. The sub-block of the lower right set of
t× t blocks is Arikrjk.

The matrix for gkm is (
P T
T′ S

)
, (11)

where

P =


2X′1AX1r

1kr1m . . . X′1AXt(r
1krtm + r1mrtk)

...
...

X′tAX1(r
1krtm + r1mrtk) . . . 2X′tAXtr

tkrtm

 ,

T =


2X′1Ar1kr1m . . . X′1A(r1krtm + r1mrtk)
...

...
X′tA(r1krtm + r1mrtk) . . . 2X′tArtkrtm

 ,

and

S =


2Ar1kr1m . . . A(r1krtm + r1mrtk)
...

...
A(r1krtm + r1mrtk) . . . 2Artkrtm

 .

The ijth sub-block of the upper left set of t× t blocks is

X′iAXj(r
ikrjm + rimrjk). (12)

The ijth sub-block of the upper right set is

X′iA(rikrjm + rimrjk). (13)

The ijth sub-block of the lower right set is

A(rikrjm + rimrjk). (14)
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The matrix for rkk is the same as (26.10) except that I replaces A. Thus the 3 types
of sub-blocks are X′iXjr

ikrjk, X′ir
ikrjk, and Irikrjk. The matrix for rkm is the same as

(26.11) except that I replaces A. Thus the 3 types of blocks are X′iXj(r
ikrjm + rimrjk),

X′i(r
ikrjm + rimrjk), and I(rikrjm + rimrjk).

Now define the p+1, . . . , p+n rows of a g-inverse of mixed model coefficient matrix
as C1, the next n rows as C2, etc., with the last n rows being Ct. Then

V ar(âi) = Ci[V ar(r)]C′i, (15)

where V ar(r) = variance of right hand sides expressed as matrices multiplied by the gij

and rij as described above.

Cov(âi, â
′
j) = Ci[V ar(r)]C′j. (16)

Then
E(âiA

−1â′i) = trA−1 V ar(âi). (17)

E(âiA
−1â′j) = trA−1 Cov(âi, â

′
j). (18)

To find the quadratics of (26.9) and their expectations we first compute

I−WCW′R̃−1, (19)

where W = (X Z) and C = g-inverse of mixed model coefficient matrix. Then

ê = (I−WCW′R̃−1)y. (20)

Let the first n rows of (26.19) be denoted B1, the next n rows B2, etc. Also let

Bi ≡ (Bi1 Bi2 . . . Bit). (21)

Each Bij has dimension n× n and is symmetric. Also I−WCW′R̃−1 is symmetric and
as a consequence Bij = Bji. Use can be made of these facts to reduce computing labor.
Now

êi = Biy (i = 1, . . . , t). (22)

V ar(êi) = Bi[V ar(y)]B′i. (23)

Cov(êi, êj) = Bi[V ar(y)]B′j. (24)

By virtue of the form of V ar(y),

V ar(êi) =
t∑

k=1

B2
ikrkk +

t−1∑
k=1

t∑
m=k+1

2BikBimrkm

+
t∑

k=1

BikABikgkk +
t−1∑
k=1

t∑
m=k+1

2BikABimgkm. (25)
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Cov(êi, êj) =
t∑

k=1

BikBjkrkk

+
t−1∑
k=1

t∑
m=k+1

(BikBjmBimBjk)rkm

+
t∑

k=1

BikABjkgkk

+
t−1∑
k=1

t∑
m=k+1

(BikABjm + BimABjk)gkm. (26)

E(ê′iêi) = trV ar(êi). (27)

E(ê′iêj) = trCov(êi, ê
′
j). (28)

Note that only the diagonals of the matrices of (26.25) and (26.26) are needed.

2 Missing Data

When data are missing on some traits of some of the animals, the computations are more
difficult. An attempt is made in this section to present algorithms that are efficient for
computing, including strategies for minimizing data storage requirements. Henderson and
Quaas (1976) discuss BLUP techniques for this situation.

The computations for the missing data problem are more easily described and carried
out if we order the records, traits within animals. It also is convenient to include missing
data as a dummy value = 0. Then y has nt elements as follows:

y′ = (y′1y
′
2 . . . y′n),

where yi is the vector of records on the t traits for the ith animal. With no missing data
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the model for the nt records is

y11

y12
...

y1t

y21

y22
...

y2t
...

yn1

yn2
...

ynt



=



x′11 0 . . . 0
0 x′12 . . . 0
...

...
...

0 0 . . . x′1t

x′21 0 . . . 0
0 x′22 . . . 0
...

...
...

0 0 . . . x′2t
...

...
...

x′n1 0 . . . 0
0 x′n2 . . . 0
...

...
...

0 0 . . . x′nt




β1

β2
...

βt

+



a11

a12
...

a1t

a21

a22
...

a2t
...

an1

an2
...

ant



+



e11

e12
...

e1t

e21

e22
...

e2t
...

en1

en2
...

ent



.

x′ij is a row vector relating the record on the jth trait of the ith animal to βj, the fixed
effects for the jth trait. βj has pj elements and

∑
j pj = p. When a record is missing,

it is set to 0 and so are the elements of the model for that record. Thus, whether data
are missing or not, the incidence matrix has dimension, nt by (p + nt). Now R has block
diagonal form as follows.

R =


R1 0 . . . 0
0 R2 . . . 0
...

...
...

0 0 . . . Rn

 . (29)

For an animal with no missing data, Ri is the t× t environmental covariance matrix. For
an animal with missing data the rows (and columns) of Ri pertaining to missing data are
set to zero. Then in place of R−1 ordinarily used in the mixed model equations, we use
R− which is 

R−1 0
R−2

. . .

0 R−n

 . (30)

R−1 is the zeroed type of g-inverse described in Section 3.3. It should be noted that Ri is
the same for every animal that has the same missing data. There are at most t2− 1 such
unique matrices, and in the case of sequential culling only t such matrices corresponding
to trait 1 only, traits 1 and 2 only, . . . , all traits. Thus we do not need to store R and
R− but only the unique types of R−i .
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V ar(a) has a simple form, which is

V ar(a) =


a11G0 a12G0 . . . a1nG0

a12G0 a22G0 . . . a2nG0
...

...
...

a1nG0 a2nG0 . . . annG0

 , (31)

where G0 is the t × t covariance matrix of additive effects in an unselected non-inbred
population. Then

[V ar(a)]−1 =


a11G−1

0 a12G−1
0 . . . a1nG−1

0

a12G−1
0 a22G−1

0 . . . a2nG−1
0

...
...

...
a1nG−1

0 a2nG−1
0 . . . annG−1

0

 . (32)

aij are the elements of the inverse of A. Note that all nt of the aij are included in the
mixed model equations even though there are missing data.

We illustrate prediction by the following example that includes 4 animals and 3 traits
with the βj vector having 2, 1, 2 elements respectively.

Trait
Animal 1 2 3

1 5 3 6
2 2 5 7
3 - 3 4
4 2 - -

X for β1 =

 1 2
1 3
1 4

 ,

for β2 =

 1
1
1

 ,

and for β3 =

 1 3
1 4
1 2

 .
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Then, with missing records included, the incidence matrix is

1 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 3 0 0 1 0 0 0 0 0 0 0 0 0
1 3 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 1 4 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 2 0 0 0 0 0 0 0 0 1 0 0 0
1 4 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



. (33)

We assume that the environmental covariance matrix is 5 3 1
6 4

7

 .

Then R− for animals 1 and 2 is .3059 −.2000 .0706
.4000 −.2000

.2471

 ,

R− for animal 3 is  0 0 0
.2692 −.1538

.2308

 ,

and for animal 4 is  .2 0 0
0 0

0

 .

Suppose that

A =


1. 0 .5 0

1. .5 .5
1. .25

1.


and

G0 =

 2 1 1
3 2

4

 .
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V ar(â) is 

2.0 1.0 1.0 0 0 0 1.0 .5 .5 0 0 0
3.0 2.0 0 0 0 .5 1.5 1.0 0 0 0

4.0 0 0 0 .5 1.0 2.0 0 0 0
2.0 1.0 1.0 1.0 .5 .5 1.0 .5 .5

3.0 2.0 .5 1.5 1.0 .5 1.5 1.0
4.0 .5 1.0 2.0 .5 1.0 2.0

2.0 1.0 1.0 .5 .25 .25
3.0 2.0 .25 .75 .5

4.0 .25 .5 1.0
2.0 1.0 1.0

3.0 2.0
4.0



. (34)

Using the incidence matrix, R−, G−1, and y we get the coefficient matrix of mixed
model equations in (26.35) . . . (26.37). The right hand side vector is (1.8588, 4.6235, -
.6077, 2.5674, 8.1113, 1.3529, -1.0000, 1.2353, .1059, .2000, .8706, 0, .1923, .4615, .4000,
0, 0)′. The solution vector is (8.2451, -1.7723, 3.9145, 3.4054, .8066, .1301, -.4723, .0154,
-.2817, .3965, -.0911, -.1459, -.2132, -.2480, .0865, .3119, .0681)’.

Upper left 8 x 8 (times 1000)

812 2329 −400 141 494 306 −200 71
7176 −1000 353 1271 612 −400 141

1069 −554 −1708 −200 400 −200
725 2191 71 −200 247

7100 212 −600 741
1229 −431 −045

1208 −546
824


. (35)

Upper right 8 x 9 and (lower left 9 × 8)’ (times 1000)

306 −200 71 0 0 0 200 0 0
918 −600 212 0 0 0 800 0 0
−200 400 −200 0 269 −154 0 0 0

71 −200 247 0 −154 231 0 0 0
282 −800 988 0 −308 462 0 0 0
308 −77 −38 −615 154 77 0 0 0
−77 269 −115 154 −538 231 0 0 0
−38 −115 192 77 231 −385 0 0 0


. (36)
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Lower right 9 × 9 (times 1000)

1434 −482 −70 −615 154 77 −410 103 51
1387 −623 154 −538 231 103 −359 154

952 77 231 −385 51 154 −256
1231 −308 −154 0 0 0

1346 −615 0 0 0
1000 0 0 0

1020 −205 −103
718 −308

513


. (37)

3 EM Algorithm

In spite of its possible slow convergence I tend to favor the EM algorithm for REML
to estimate variances and covariances. The reason for this preference is its simplicity
as compared to iterated MIVQUE and, above all, because the solution remains in the
parameter space at each round of iteration.

If the data were stored animals in traits and âi = BLUP for the n breeding values
on the ith trait, gij would be estimated by iterating on

ĝij = (âiA
−1âj + trA−1Cij)/n, (38)

where Cij is the submatrix pertaining to Cov(âi− ai, â′j − a′j) in a g-inverse of the mixed
model coefficient matrix. These same computations can be effected from the solution with
ordering traits in animals. The following FORTRAN routine accomplishes this.

10



REAL *8 A( ), C( ), U( ), S

INTEGER T

.

.

.

NT=N*T

DO 7 I=1, T

DO 7 J=I, T

S=0. DO

DO 6 K=1, N

DO 6 L=1, N

6 S=S+A(IHMSSF(K,L,N))*U(T*K-T+I)*U(T*L-T+J)

7 Store S

.

.

.

DO 9 I=1, T

DO 9 J=I, T

S=0. DO

DO 8 K=1, N

DO 8 L=1, N

8 S=S+A(IHMSSF(K,L,N))*C(IHMSSF(T*K-T+I,T*L-T+J,NT))

9 Store S

A is a one dimensional array with N(N+1)/2 elements containing A−1. C is a one
dimensional array with NT(NT+1)/2 elements containing the lower (NT)2 submatrix of
a g-inverse of the coefficient matrix. This also is half-stored. U is the solution vector for
a′. IHMSSF is a half-stored matrix subscripting function. The t(t + 1)/2 values of S in
statement 7 are the values of â′iA

−1âi. The values of S in statement 9 are the values of
trA−1Cij.

In our example these are the following for the first round. (.1750, -.1141, .0916,
.4589, .0475, .1141), for â′iA

−1aj, and (7.4733, 3.5484, 3.4788, 10.5101, 7.0264, 14.4243)
for trA−1Cij. This gives us as the first estimate of G0 the following, 1.912 .859 .893

2.742 1.768
3.635

 .

Note that the matrix of the quadratics in â remain the same for all rounds of iteration,
that is, A−1.

In constrast, the quadratics in ê change with each round of iteration. However, they
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have a simple form since they are all of the type,

n∑
i=1

ê′iQiêi,

where êi is the vector of BLUP of errors for the t traits in the ith animal. The ê are
computed as follows

êij = yij − x′ijβ
o
j − âij (39)

when yij is observed. êij is set to 0 for yij = 0. This is not BLUP, but suffices for
subsequent computations. At each round we iterate on

trQijR = (ê′Qij ê + trQijWCW′) i = 1, . . . , tij, j = i, . . . , t. (40)

This gives at each round a set of equations of the form

Tr̂ = q, (41)

where T is a symmetric t × t matrix, r = (r11 r12 . . . rtt)
′, and q is a t × 1 vector of

numbers. Advantage can be taken of the symmetry of T, so that only t(t+1)/2 coefficients
need be computed rather than t2.

Advantage can be taken of the block diagonal form of all Qij. Each of them has the
following form

Qij =


B1ij 0

B2ij

. . .

0 Bnij

 . (42)

There are at most t2−1 unique Bkij for any Qij, these corresponding to the same number
of unique R−k . The B can be computed easily as follows. Let

R−k =


f11 f12 . . . f1t

f12 f22 . . . f2t
...

...
...

f1t f2t . . . ftt

 ≡ (f1 f2 . . . ft).

Then
Bkii = fif

′
i (43)

Bkij = (fif
′
j) + (fif

′
j)
′ for i 6= j. (44)

In computing trQijR remember that Q and R have the same block diagonal form. This
computation is very easy for each of the n products. Let

Bkij =


b11 b12 . . . b1t

b12 b22 . . . b2t
...

...
...

b1t b2t . . . btt

 .
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Then the coefficient of rii contributed by the kth animal in the trace is bii. The coefficient
of rij is 2bij.

Finally note that we need only the n blocks of order t × t down the diagonals of
WCW′ for trQijWCW′. Partition C as

C =


Cxx Cx1 . . . Cxn

C′x1 C11 . . . C1n
...

...
...

C′xn C′1n . . . Cnn

 .

Then the block of WCW′ for the ith animal is

XiCxxX
′
i + XiCxi + (XiCxi)

′ + Cii (45)

and then zeroed for missing rows and columns, although this is not really necessary since
the Qkij are correspondingly zeroed. Xi is the submatrix of X pertaining to the ith animal.
This submatrix has order t× p.

We illustrate some of these computations for r̂. First, consider computation of Qij.
Let us look at B211, that is, the block for the second animal in Q11.

R−2 =

 .3059 −.2000 .0706
−.2000 .4000 −.2000

.0706 −.2000 .2471

 .

Then

B211 =

 .3059
−.2000

.0706

 (.3059 − .2000 .0706) =

 .0936 −.0612 .0216
.0400 −.0141

.0050

 .

Look at B323, that is, the block for the third animal in Q23.

R−3 =

 0 0 0
0 .2692 −.1538
0 −.1538 .2308

 .

Then

B323 =

 0
.2692
−.1538

 (0 − .1538 .2308) + transpose of this product

=

 0 0 0
0 −.0414 .0621
0 .0237 −.03500

+ ( )′

=

 0 0 0
0 −.0828 .0858
0 .0858 −.0710

 .
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Next we compute trQijR. Consider the contribution of the first animal to trQ12R.

B112 =

 −.1224 .1624 −.0753
−.1600 .0682

−.0282

 .

Then this animal contributes

−.1224 r11 + .2(.1624) r12 − 2(.0753) r13 − .1600 r22 + 2(.0682) r23 − .0282 r33.

Finally we illustrate computing a block of WCW′ by (26.45). We use the third
animal.

X3 =

 0 0 0 0 0
0 0 1 0 0
0 0 0 1 2

 .

Cxx =


29.4578 −9.2266 3.0591 2.7324 −.3894

3.1506 −.6444 −.5254 .0750
3.5851 2.3081 .0305

30.8055 −8.5380
2.7720

 .

Cx3 =


−1.7046 −1.2370 −1.0037

.2759 .2264 .1692
−.6174 −1.9083 −1.2645
−.8627 −1.2434 −4.7111

.0755 −.0107 .7006

 .

C33 =

 1.9642 .9196 .9374
2.7786 1.8497

3.8518

 .

Then the computations of (26.45) give 1.9642 .3022 .2257
2.5471 1.6895

4.9735

 .

Since the first trait was missing on animal 3, the block of WCW′ becomes 0 0 0
2.5471 1.6895

4.9735

 .

Combining these results, r̂ for the first round is the solution to

.227128 −.244706 .086367 .080000 −.056471 .009965
.649412 −.301176 −.320000 .272941 −.056471

.322215 .160000 −.254118 .069758
.392485 −.402840 .103669

.726892 −.268653
.175331


r̂

14



= (.137802, −.263298, .084767, .161811,−.101820, .029331)′

+ (.613393, −.656211, .263861, .713786, −.895139, .571375)′.

This gives the solution

R̂ =

 3.727 1.295 .311
3.419 2.270

4.965

 .
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Chapter 27
Sire Model, Multiple Traits

C. R. Henderson

1984 - Guelph

1 Only One Trait Observed On A Progeny

This section deals with a rather simple model in which there are t traits measured on the
progeny of a set of sires. But the design is such that only one trait is measured on any
progeny. This results in R being diagonal. It is assumed that each dam has only one
recorded progeny, and the dams are non-inbred and unrelated. An additive genetic model
is assumed. Order the observations by progeny within traits. There are t traits and k
sires. Then the model is

y1

y2
...
yt

 =


X1 0 . . . 0
0 X2 . . . 0
...

...
...

0 0 Xt




β1

β2
...

βt



+


Z1 0 . . . 0
0 Z2 . . . 0
...

...
...

0 0 Zt




s1

s2
...
st

+


e1

e2
...
et

 (1)

yi represents ni progeny records on trait i, βi is the vector of fixed effects influencing the
records on the ith trait, Xi relates βi to elements of yi, and si is the vector of sire effects
for the ith trait. It has k has a null column corresponding to such a sire.

V ar


s1

s2
...
st

 =


Ab11 Ab12 . . . Ab1t

Ab12 Ab22 . . . Ab2t
...

...
...

Ab1t Ab2t . . . Abtt

 = G. (2)

A is the k × k numerator relationship matrix for the sires. If the sires were unselected,
bij = gij/4, where gij is the additive genetic covariance between traits i and j.

V ar


e1

e2
...
et

 =


Id1 0 . . . 0
0 Id2 . . . 0
...

...
...

0 0 . . . Idt

 = R. (3)
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Under the assumption of unselected sires

di = .75 gii + rii,

where rii is the ith diagonal of the error covariance matrix of the usual multiple trait
model. Then the GLS equations for fixed s are

d−1
1 X′1X1 . . . 0 d−1

1 X′1Z1 . . . 0
...

...
...

...
0 . . . d−1

t X′tXt 0 . . . d−1
t X′tZt

d−1
1 Z′1X1 . . . 0 d−1

1 Z′1Z1 . . . 0
...

...
...

...
0 . . . d−1

t Z′tXt 0 . . . d−1
t Z′tZt




βo
1

...
βo

t

ŝ1
...
ŝt


=



d−1
1 X′1y1

...
d−1

t X′tyt

d−1
1 Z′1y1

...
d−1

1 Z′tyt


(4)

The mixed model equations are formed by adding G−1 to the lower right (kt)2 submatrix
of (27.4), where

G−1 =


A−1b11 . . . A−1b1t

...
...

A−1b1t . . . A−1btt

 , (5)

and bij is the ijth element of the inverse of
b11 . . . b1t
...

...
b1t . . . btt

 .

With this model it seems logical to estimate di by

[y′iyi − (βo
i )
′X′iyi − (uo

i )
′Z′iyi]/[ni − rank(Xi Zi)]. (6)

βo
i and uo

i are some solution to (27.7)(
X′iXi X′iZi

Z′iXi Z′iZi

) (
βo

i

uo
i

)
=

(
X′iyi

Z′iyi

)
. (7)

Then using these d̂i, estimate the bij by quadratics in ŝ, the solution to (27.4). The
quadratics needed are

ŝ′iA
−1ŝj; i = 1, . . . , t; j = i, . . . , t.

These are computed and equated to their expectations. We illustrate this section with a
small example. The observations on progeny of three sires and two traits are
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Sire Trait Progeny Records
1 1 5,3,6
2 1 7,4
3 1 5,3,8,6
1 2 5,7
2 2 9,8,6,5

Suppose X′1 = [1 . . . 1] with 9 elements, and X′2 = [1 . . . 1] with 6 elements.

Z1 =



1 0 0
1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1
0 0 1


, Z2 =



1 0 0
1 0 0
0 1 0
0 1 0
0 1 0
0 1 0


.

Suppose that

R =

(
30 I9 0
0 25 I6

)
,

A =

 1. .5 .5
.5 1. .25
.5 .25 1.

 ,

and (
b11 b12

b12 b22

)
=

(
3 1
1 2

)
.

Then

G =



3. 1.5 1.5 1. .5 .5
3. .75 .5 1. .25

3. .5 .25 1.
2. 1. 1.

2. .5
2.


,

G−1 =



10 −4 −4 −5 2 2
8 0 2 −4 0

8 2 0 −4
15 −6 −6

12 0
12


1

15
.
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(
X′R−1

Z′R−1

)
(X Z) =

1

150



45 0 15 10 20 0 0 0
36 0 0 0 12 24 0

15 0 0 0 0 0
10 0 0 0 0

20 0 0 0
12 0 0

24 0
0


(8)

Adding G−1 to the lower 6 × 6 submatrix of (27.8) gives the mixed model coefficient
matrix. The right hand sides are [1.5667, 1.6, .4667, .3667, .7333, .48, 1.12, 0]. The
inverse of the mixed model coefficient matrix is

5.210 0.566 −1.981 −1.545 −1.964 −0.654 −0.521 −0.652
0.566 5.706 −0.660 −0.785 −0.384 −1.344 −1.638 −0.690

−1.981 −0.660 2.858 1.515 1.556 0.934 0.523 0.510
−1.545 −0.785 1.515 2.803 0.939 0.522 0.917 0.322
−1.964 −0.384 1.556 0.939 2.783 0.510 0.322 0.923
−0.654 −1.344 0.934 0.522 0.510 1.939 1.047 0.984
−0.521 −1.638 0.523 0.917 0.322 1.047 1.933 0.544
−0.652 −0.690 0.510 0.322 0.923 0.984 0.544 1.965


(9)

The solution to the MME is (5.2380, 6.6589, -.0950, .0236, .0239, -.0709, .0471, -.0116).

2 Multiple Traits Recorded On A Progeny

When multiple traits are observed on individual progeny, R is no longer diagonal. The
linear model can still be written as (27.1). Now, however, the yi do not have the same
number of elements, and Xi and Zi have varying numbers of rows. Further,

R =


I r11 P12r12 . . . P1tr1t

P′12r12 I r22 . . . P2tr2t
...

...
...

P′1tr1t P′2tr2t . . . I rtt

 . (10)

The I matrices have order equal to the number of progeny with that trait recorded.
r11 . . . r1t
...

...
r1t . . . rtt


is the error variance-covariance matrix. We can use the same strategy as in Chapter 25
for missing data. That is, each yi is the same length with 0’s inserted for missing data.
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Accordingly, all Xi and Zi have the same number of rows with rows pertaining to missing
observations set to 0. Further, R is the same as for no missing data except that rows
corresponding to missing observations are set to 0. Then the zeroed type of g-inverse of
R is 

D11 D12 . . . D1t

D12 D22 . . . D2t
...

...
...

D1t D2t . . . Dtt

 . (11)

Each of the Dij is diagonal with order, n. Now the GLS equations for fixed s are

X′1D11X1 . . . X′1D1tXt X′1D11Z1 . . . X′1D1tZt
...

...
...

...
X′tD1tX1 . . . X′tDttXt X′tD1tZ1 . . . X′tDttZt

Z′1D11X1 . . . Z′1D1tXt Z′1D11Z1 . . . Z′1D1tZt
...

...
...

...
Z′tD1tX1 . . . Z′tDttXt Z′tD1tZ1 . . . Z′tDttZt





βo
1

...
βo

t

ŝ1
...
ŝt


=



X′1D11y1 + . . . + X′1D1tyt
...

...
X′tD1ty1 + . . . + X′tDttyt

Z′1D11y1 + . . . + Z′1D1tyt
...

...
Z′tD1ty1 + . . . + Z′tDttyt


. (12)

With G−1 added to the lower part of (27.12) we have the mixed model equations.

We illustrate with the following example.

Trait
Sire Progeny 1 2

1 1 6 5
2 3 5
3 - 7
4 8 -

2 5 4 6
6 - 7
7 3 -

3 8 5 4
9 8 -

We assume the same G as in the illustration of Section 27.1, and(
r11 r12

r12 r22

)
=

(
30 10
10 25

)
.
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We assume that the only fixed effects are µ1 and µ2 . Then using the data vector with
length 13, ordered progeny in sire in trait,

X′1 = (1 1 1 1 1 1 1), X′2 = (1 1 1 1 1 1),

Z1 =



1 0 0
1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1


, Z2 =



1 0 0
1 0 0
1 0 0
0 1 0
0 1 0
0 0 1


,

y′1 = (6 3 8 4 3 5 8), y′2 = (5 5 7 6 7 4),

and

R =



30 0 0 0 0 0 0 10 0 0 0 0 0
30 0 0 0 0 0 0 10 0 0 0 0

30 0 0 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 10 0 0

30 0 0 0 0 0 0 0 0
30 0 0 0 0 0 0 10

30 0 0 0 0 0 0
25 0 0 0 0 0

25 0 0 0 0
25 0 0 0

25 0 0
25 0

25



.

Then the GLS coefficient matrix for fixed s is in (27.13).

0.254 −0.061 0.110 0.072 0.072 −0.031 −0.015 −0.015
−0.061 0.265 −0.031 −0.015 −0.015 0.132 0.086 0.046

0.110 −0.031 0.110 0.0 0.0 −0.031 0.0 0.0
0.072 −0.015 0.0 0.072 0.0 0.0 −0.015 0.0
0.071 −0.015 0.0 0.0 0.072 0.0 0.0 −0.015

−0.031 0.132 −0.031 0.0 0.0 0.132 0.0 0.0
−0.015 0.086 0.0 −0.015 0.0 0.0 0.086 0.0
−0.015 0.046 0.0 0.0 −0.015 0.0 0.0 0.046


(13)

G−1 is added to the lower 6 × 6 submatrix to form the mixed model coefficient matrix.
The right hand sides are (1.0179, 1.2062, .4590, .1615, .3974, .6031, .4954, .1077). The
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inverse of the coefficient matrix is

6.065 1.607 −2.111 −1.735 −1.709 −0.702 −0.603 −0.546
1.607 5.323 −0.711 −0.625 −0.519 −1.472 −1.246 −1.017

−2.111 −0.711 2.880 1.533 1.527 0.953 0.517 0.506
−1.735 −0.625 1.533 2.841 0.893 0.517 0.938 0.303
−1.709 −0.519 1.527 0.893 2.844 0.506 0.303 0.944
−0.702 −1.472 0.953 0.517 0.506 1.939 1.028 1.003
−0.602 −1.246 0.517 0.938 0.303 1.028 1.924 0.562
−0.546 −1.017 0.506 0.303 0.943 1.002 0.562 1.936


. (14)

The solution is [5.4038, 5.8080, .0547, -.1941, .1668, .0184, .0264, -.0356].

If we use the technique of including in y, X, Z, R, G the missing data we have

X′1 = (1 1 0 1 1 0 1 1 1), X′2 = (1 1 1 0 1 1 0 1 0),

Z1 =



1 0 0
1 0 0
0 0 0
1 0 0
0 1 0
0 0 0
0 1 0
0 0 1
0 0 1


, Z2 =



1 0 0
1 0 0
1 0 0
0 0 0
0 1 0
0 1 0
0 0 0
0 0 1
0 0 0


.

y′1 = (6, 3, 0, 8, 4, 0, 3, 5, 8),

and
y′2 = (5, 5, 7, 0, 6, 7, 0, 4, 0).

D11 = diag[.0385, .0385, 0, .0333, .0385, 0, .0333, .0385, .0333]

D12 = diag[−.0154, −.0154, 0, 0, −.0154, 0, 0, −.0154, 0]

D22 = diag[.0462, .0462, .04, 0, .0462, .04, 0, .0462, 0].

This leads to the same set of equations and solution as when y has 13 elements.

3 Relationship To Sire Model With Repeated Records

On Progeny

The methods of Section 27.2 could be used for sire evaluation using progeny with repeated
records (lactations, e.g.), but we do not wish to invoke the simple repeatability model.
Then lactation 1 is trait 1, lactation 2 is trait 2, etc.
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Chapter 28
Joint Cow and Sire Evaluation

C. R. Henderson

1984 - Guelph

At the present time, (1984), agencies evaluating dairy sires and dairy females have
designed separate programs for each. Sires usually have been evaluated solely on the
production records of their progeny. With the development of an easy method for com-
puting A−1 this matrix has been incorporated by some agencies, and that results in the
evaluation being a combination of the progeny test of the individual in question as well
as progeny tests of his relatives, eg., sire and paternal brothers. In addition, the method
also takes into account the predictions of the merits of the sires of the mates of the bulls
being evaluated. This is an approximation to the merits of the mates without using their
records.

In theory one could utilize all records available in a production testing program
and could compute A−1 for all animals that have produced these records as well as
additional related animals without records that are to be evaluated. Then these could be
incorporated into a single set of prediction equations. This, of course, could result in a set
of equations that would be much too large to solve with existing computers. Nevertheless,
if we are willing to sacrifice some accuracy by ignoring the fact that animals change herds,
we can set up equations that are block diagonal in form that may be feasible to solve.

1 Block Diagonality Of Mixed Model Equations

Henderson (1976) presented a method for rapid calculation of A−1 without computing A.
A remarkable property of A−1 is that the only non-zero off-diagonal elements are those
pertaining to a pair of mates, and those pertaining to parent - progeny pairs. These
non-zero elements can be built up by entering the data in any order, with each piece of
data incorporating the individual identification number, the sire number, and the dam
number. At the same time one could enter with this information the production record
and elements of the incidence matrix of the individual. Now when the dam and her
progeny are in different herds, we pretend that we do not know the dam of the progeny
and if, when a natural service sire has progeny in more than one herd, we treat him
as a different sire in each herd, there are no non-zero elements of A−1 between herds.
This strategy, along with the fact that most if not all elements of β are peculiar to the
individual herd, results in the mixed model coefficient matrix having a block diagonal
form. The elements of the model are ordered as follows
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β0: a subvector of β common to all elements of y.

a0: a subvector of a, additive genetic values, pertaining to sires used in several herds.

βi (i = 1, . . . , number of herds): a subvector of β pertaining only to records in the ith

herd.

ai: a subvector of a pertaining to animals in the ith herd. ai can represent cows with
records, or dams and non-AI sires of the cows with records. In computing A−1 for
the animals in the ith herd the dam is assumed unknown if it is in a different herd.
When Sectiom 28.3 method is used (multiple records) no records of a cow should be
used in a herd unless the first lactation record is available. This restriction prevents
using records of a cow that moves to another herd subsequent to first lactation. With
this ordering and with these restrictions in computing A−1 the BLUP equations have
the following form



C00 C01 C02 · · · C0k

C
′
01 C11 0 · · · 0

C
′
02 0 C22 · · · 0

...
...

C
′
0k 0 0 · · · Ckk





γ0

γ1

γ2
...
γk

 =



r0

r1

r2
...
rk

 .

γ
′

0 = (β
′

0 a
′

0),

γ
′

i = (β
′

i a
′

i).

Then with this form of the equations the herd unknowns can be “absorbed” into the β0

and a0 equations provided the Cii blocks can be readily inverted. Otherwise one would
need to solve iteratively. For example, one might first solve iteratively for β0 and a0 sires
ignoring βi, ai. Then with these values one would solve iteratively for the herd values.
Having obtained these one would re-solve for β0 and the a0 values, adjusting the right
hand sides for the previously estimated herd values.

The AI sire equations would also contain values for the “base population” sires. A
base population dam with records would be included with the herd in which its records
were made. Any base population dam that has no records, has only one AI son, and has
no female progeny can be ignored without changing the solution.

2 Single Record On Single Trait

The simplest example of joint cow and sire evaluation with multiple herds involves a single
trait and with only one record per tested animal. We illustrate this with the following
example.
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Base population animals
1 male
2 female with record in herd 1
3 female with record in herd 2

AI Sires
4 with parents 1 and 2
5 with parents 1 and 3

Other Females With Records
6 with unknown parents, record in herd 1
7 with unknown parents, record in herd 2
8 with parents 4 and 6, record in herd 1
9 with parents 4 and 3, record in herd 2

10 with parents 5 and 7, record in herd 2
11 with parents 5 and 2, record in herd 1

Ordering these animals (1,4,5,2,6,8,11,3,7,9,10) the A matrix is in (28.1).

1 .5 .5 0 0 .25 .25 0 0 .25 .25
1 .25 .5 0 .5 .375 0 0 .5 .125

1 0 0 .125 .5 .5 0 .375 .5
1 0 .25 .5 0 0 .25 0

1 .5 0 0 0 0 0
1 .1875 0 0 .25 .0625

1 .25 0 .3125 .25
1 0 .5 .25

1 0 .5
1 .1875

1



(1)

A−1 shown in (28.2)

2 −1 −1 .5 0 0 0 .5 0 0 0
3 0 −1 .5 −1 0 .5 0 −1 0

3 .5 0 0 −1 −1 .5 0 −1
2 0 0 −1 0 0 0 0

1.5 −1 0 0 0 0 0
2 0 0 0 0 0

2 0 0 0 0
2 0 −1 0

1.5 0 −1
2 0

2



(2)

Note that the lower 8×8 submatrix is block diagonal with two blocks of order 4×4 down
the diagonal and 4× 4 null off-diagonal blocks. The model assumed for our illustration is

yij = µi + aij + eij,
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where i refers to herd and j to individual within herd. Then with ordering

(a1, a4, a5, µ1, a2 a6, a8, a11, µ2, a3 a7, a9, a10)

the incidence matrix is as shown in (28.3). Note that βo does not exist.

0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0 0 1


(3)

Suppose y’ = [3,2,5,6,7,9,2,3] corresponding to animals 2,6,8,11,3,7,9,10. We assume that
h2 = .25 which implies σ2

e/σ
2
a = 3. Then adding 3 A−1 to appropriate elements of the

OLS equations we obtain mixed model equations displayed in (28.4).
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6 −3 −3 0 1.5 0 0 0 0 1.5 0 0 0
9 0 0 −3 1.5 −3 0 0 1.5 0 −3 0

9 0 1.5 0 0 −3 0 −3 1.5 0 −3
4 1 1 1 1 0 0 0 0 0

7 0 0 −3 0 0 0 0 0
5.5 −3 0 0 0 0 0 0

7 0 0 0 0 0 0
7 0 0 0 0 0

4 1 1 1 1
7 0 −3 0

5.5 0 −3
7 0

7




â1

â4

â5

µ̂1

â2

â6

â8

â11

µ̂2

â3

â7

â9

â10



=



0
0
0

16
3
2
5
6

21
7
9
2
3



(4)

Note that the lower 10 × 10 block of the coefficient matrix is block diagonal with 5 × 5
blocks down the diagonal and 5× 5 null blocks off-diagonal. The solution to (28.4) is

[-.1738, -.3120, -.0824, 4.1568, -.1793, -.4102, -.1890, .1512, 5.2135, .0857, .6776, -
.5560, -.0611].

Note that the solution to (a1, a4, a5) could be found by absorbing the other equations as
follows.


 6 −3 −3

9 0
9

−
 0 1.5 0 0 0

0 −3 1.5 −3 0
0 1.5 0 0 −3




4 1 1 1 1
7 0 0 −3

5.5 −3 0
7 0

7



−1

5




0 0 0

1.5 −3 1.5
0 1.5 0
0 −3 0
0 0 −3

−
 0 1.5 0 0 0

0 1.5 0 −3 0
0 −3 1.5 0 −3




4 1 1 1 1
7 0 −3 0

5.5 0 −3
7 0

7



−1


0 0 0

1.5 1.5 −3
0 0 1.5
0 −3 0
0 0 −3





 a1

a4

a5

 =

 0
0
0

−
 0 1.5 0 0 0

0 −3 1.5 −3 0
0 1.5 0 0 −3




4 1 1 1 1
7 0 0 −3

5.5 −3 0
7 0

7



−1
16
3
2
5
6

−
 0 1.5 0 0 0

0 1.5 0 −3 0
0 −3 1.5 0 −3




4 1 1 1 1
7 0 −3 0

5.5 0 −3
7 0

7



−1
21
7
9
2
3

 .

Iterations on these equations were carried out by two different methods. First, the herd
equations were iterated 5 rounds with AI sire values fixed. Then the AI sire equations were
iterated 5 rounds with the herd values fixed and so on. It required 17 cycles (85 rounds)
to converge to the direct solution previously reported. Regular Gauss-Seidel iteration
produced conversion in 33 rounds. The latter procedure would require more retrieval of
data from external storage devices.

3 Simple Repeatability Model

As our next example we use the same animals as before but now we have records as
follows.

Herd 1 Herd 2
Years Years

Cow 1 2 3 Cow 1 2 3
2 5 6 - 3 8 - -
6 4 5 3 7 9 8 7
8 - 7 6 9 - 8 8
11 - - 8 10 - - 7

6



We assume a model,
yijk = µij + aik + pik + eijk.

i refers to herd, j to year, and k to cow. It is assumed that h2 = .25, r = .45. Then

V ar(a) = A σ2
e/2.2.

V ar(p) = I σ2
e/2.75.

σ2
e/σ

2
a = 2.2, σ2

e/σ
2
p = 2.75

The diagonal coefficients of the p equations of OLS have added to them 2.75. Then p̂
can be absorbed easily. This can be done without writing the complete equations by
weighting each observation by

2.75

nik + σ2
e/2.75

where nik is the number of records on the ikth cow. These weights are .733, .579, .478
for 1,2,3 records respectively. Once these equations are derived, we then add 2.2 A−1 to
appropriate coefficients to obtain the mixed model equations. The coefficient matrix is
in (28.5) . . . (28.7), and the right hand side vector is (0, 0, 0, 4.807, 9.917, 10.772, 6.369,
5.736, 7.527, 5.864, 10.166, 8.456, 13.109, 5.864, 11.472, 9.264, 5.131)’. The unknowns are
in this order (a1, a4, a5, µ11, µ12, µ13, a2, a6, a8, a11, µ21, µ22, µ23, a3, a7, a9, a10). Note
that block diagonality has been retained. The solution is

[.1956, .3217, .2214, 4.6512, 6.127, 5.9586, .2660, -.5509, .0045, .5004, 8.3515, 7.8439,
7.1948, .0377, .0516, .2424, .0892].

Upper 8 × 8 

4.4 −2.2 −2.2 0 0 0 1.1 0
6.6 0 0 0 0 −2.2 1.1

6.6 0 0 0 1.1 0
1.057 0 0 .579 .478

1.636 0 .579 .478
1.79 0 .478

5.558 0
4.734


(5)

Upper right 8 × 9 and (lower left 9 × 8)’

0 0 0 0 0 1.1 0 0 0
−2.2 0 0 0 0 1.1 0 −2.2 0

0 −2.2 0 0 0 −2.2 1.1 0 −2.2
0 0 0 0 0 0 0 0 0
.579 0 0 0 0 0 0 0 0
.579 .733 0 0 0 0 0 0 0

0 −2.2 0 0 0 0 0 0 0
−2.2 0 0 0 0 0 0 0 0


(6)
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Lower right 9 × 9

5.558 0 0 0 0 0 0 0 0
5.133 0 0 0 0 0 0 0

1.211 0 0 .733 .478 0 0
1.057 0 0 .478 .579 0

1.79 0 .478 .579 .733
5.133 0 −2.2 0

4.734 0 −2.2
5.558 0

5.133


(7)

4 Multiple Traits

As a final example of joint cow and sire evaluation we evaluate on two traits. Using the
same animals as before the records are as follows.

Herd 1 Herd 2
Trait Trait

Cow 1 2 Cow 1 2
2 6 8 3 7 -
6 4 6 7 - 2
8 9 - 9 - 8
11 - 3 10 6 9

We assume a model,
yijk = µij + aijk + eijk,

where i refers to herd, j to trait, and k to cow. We assume that the error variance-
covariance matrix for a cow and the additive genetic variance-covariance matrix for a
non-inbred individual are (

5 2
2 8

)
and

(
2 1
1 3

)
,

8



respectively. Then R is 

5 2 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0

5 2 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0

5 0 0 0 0 0 0
8 0 0 0 0 0

5 0 0 0 0
8 0 0 0

8 0 0
5 2

8



.

Ordering traits within animals, G is composed of 2× 2 blocks as follows(
2 aij aij

aij 3 aij

)
.

The right hand sides of the mixed model equations are (0, 0, 0, 0, 0, 0, 3.244, 1.7639,
.8889, .7778, .5556, .6111, 1.8, 0, 0, .375, 2.3333, 2.1167, 1.4, 0, 0, .25, 0, 1., .8333, .9167)
corresponding to ordering of equations,

[a11, a12, a41, a42, a51, a52, µ11, µ12, a21, a22, a61, a62, a81, a82, a11,1, a11,2, µ21, µ22, a31, a32,
a71, a72, a91, a92, a10,1, a10,2].

The coefficient matrix is block diagonal with two 10×10 blocks in the lower diagonal
and with two 10× 10 null blocks off-diagonal. The solution is

(.2087, .1766, .4469, .4665, .1661, .1912, 5.9188, 5.9184, .1351, .3356, -.1843, .1314, .6230,
.5448, -.0168, -.2390, 6.0830, 6.5215, .2563, .2734, -.4158, -.9170, .4099, .5450, -.0900,
.0718).

5 Summary Of Methods

The model to be used contains the following elements.

1. X0β0 : pertaining to all records

2. Xiβi : pertaining to records only on the ith herd.

3. Z0a0 : additive genetic values of sires used in several herds, AI sires in particular, but
could include natural service sires used in several herds.
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4. Ziai : additive genetic values of all females that have made records in the ith herd.
Some of these may be dams of AI sires. Others will be daughters of AI sires, and
some will be both dams and daughters of different AI sires. Ziai will also contain
any sire with daughters only in the ith herd or with daughters in so few other herds
that this is ignored, and he is regarded as a different sire in each of the other herds.
One will need to decide how to handle such sires, that is, how many to include with
AI sires and how many to treat as a separate sire in each of the herds in which he
has progeny.

5. A−1 should be computed by Henderson’s simple method, possibly ignoring inbreeding
in large data sets, since this reduces computations markedly. In order to generate
block diagonality in the mixed model equations the elements of A−1 for animals in
Ziai should be derived only from sires in a0 and from dams and sires in ai (same
herd). This insures that there will be no non-zero elements of A−1 between any pair
of herds, provided ordering is done according to the following

(1) X0β0

(2) Z0a0

(3) X1β1

(4) Z1a1

(5) X2β2

(6) Z2a2

...

etc.

6 Gametic Model To Reduce The Number Of Equa-

tions

Quaas and Pollak (1980) described a gametic additive genetic model that reduces the
number of equations needed for computing BLUP. The only breeding values appearing
in the equations are those of animals having tested progeny. Then individuals with no
progeny can be evaluated by taking appropriate linear functions of the solution vector.
The paper cited above dealt with multiple traits. We shall consider two situations, (1)
single traits with one or no record per trait and (2) single traits with multiple records and
the usual repeatability model assumed. If one does not choose to assume the repeatability
model, the different records in a trait can be regarded as multiple traits and the Quaas
and Pollak method used.
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6.1 Single record model

Let the model be

y = Xβ + Zaa + other possible random factors + e.

There are b animals with tested progeny, and c ≤ b of these parents are tested. There
are d tested animals with no progeny. Thus y has c + d elements. In the regular mixed
model a has b+ d elements. Za is formed from an identity matrix of order b+ d and then
deleting b− c rows corresponding to parents with no record.

V ar(a) = Aσ2
a,

V ar(e) = Iσ2
e ,

Cov(a, e′) = 0.

Now in the gametic model, which is linearly equivalent to the model above, a has
only b elements corresponding to the animals with tested progeny. As before y has c+ d
elements, and is ordered such that records of animals with progeny appear first.

Za =

(
P
Q

)
.

P is a c × b matrix formed from an identity matrix of order, b, by deleting b − c rows
corresponding to parents without a record. Q is a d × b matrix with all null elements
except the following. For the ith individual .5 is inserted in the ith row of Q in columns
corresponding to its parents in the a vector. Thus if both parents are present, the row
contains two “.5’s”. If only one parent is present, the row contains one “.5”. If neither
parent is present, the row is null. Now, of course, A has order, b, referring to those animals
with tested progeny. V ar(e) is no longer Iσ2

e . It is diagonal with diagonal elements as
follows for noninbred animals.

(1) σ2
e for parents.

(2) σ2
e + .5 σ2

a for progeny with both parents in a.

(3) σ2
e + .75 σ2

a for progeny with one parents in a.

(4) σ2
e + σ2

a for progeny with no parent in a.

This model results in d less equations than in the usual model and a possible large
reduction in time required for a solution to the mixed model equations.

Computation of âi, BLUP of a tested individual not in the solution for a but providing
data in y, is simple.

êi = yi − x
′

iβ
o − z

′

iû− .5 (Sum of parental â).
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x
′
i is the incidence matrix for the ith animal with respect to β.

z′i is the incidence matrix for the ith animal with respect to û, other random factors
in the model. Then

âi = .5 (sum of parental â) + kiêi,

where ki = .5 σ2
a/(.5 σ

2
a + σ2

e) if both parents known,

= .75 σ2
a/(.75 σ2

a + σ2
e) if one parent known,

= σ2
a/(σ

2
a + σ2

e) if neither parent known.

The solution for an animal with no record and no progeny is .5 (sum of parental â),
provided these parents, if known, are included in the b elements of â in the solution.

A simple sire model for single traits can be considered a special case of this model.
The incidence matrix for sires is the same as in Chapter 23 except that it is multipled
by .5. The “error” variance is I(σ2

e + .75 σ2
a). The G submatrix for sires is Aσ2

a rather
than .25 σ2

aA. Then the evaluations from this model for sires are exactly twice those of
Chapter 23.

A sire model containing sires of the mates but not the mates’ records can be for-
mulated by the gametic model. Then a would include both sires and grandsires. The
incidence matrix for a progeny would contain elements .5 associated with sire and .25
associated with grandsire. Then the “error” variance would contain σ2

e + .6875 σ2
a, σ2

e +
.75 σ2

a, or σ2
e + .9375 σ2

a for progeny with both sire and grandsire, sire only, or grandsire
only respectively.

We illustrate the methods of this section with a very simple example. Animals 1, . . . , 4
have records (5,3,2,8). X′ = (1 2 1 3). Animals 1 and 2 are the parents of 3, and animal
1 is the parent of 4. The error variance is σ2

e = 10 and σ2
a = 4. We first treat this as an

individual animal model where

A =


1 0 .5 .5

1 .5 0
1 .25

1

 .
The mixed model equations are

1.5 .1 .2 .1 .3
.558333 .125 −.25 −.166667

.475 −.25 0
.6 0

.433333




β̂
û1

û2

û3

û4

 =


3.7
.5
.3
.2
.8

 . (8)

The solution is
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(2.40096, .73264, -.57212, .00006, .46574).

Now in the gametic model the incidence matrix is
1 1 0
2 0 1
1 .5 .5
3 .5 0

 , G =

(
4 0
0 4

)
, R = dg (10, 10, 12, 13).

12 = 10 + .5(4), 13 = 10 + .75(4).

Then the mixed model equations are 1.275641 .257051 .241667
.390064 .020833

.370833


 β̂
û1

û2

 =

 3.112821
.891026
.383333

 . (9)

The solution is
(2.40096, .73264, −.57212). (10)

This is the same as the first 3 elements of (28.8).

ê3 = 2− 2.40096 − .5(.73264− .57212) = −.48122.

û3 = .5(.73264− .57212) + 2(−.48122)/12 = .00006.

ê4 = 8− 3(2.40096)− .5(.73264) = .43080.

û4 = .5(.73264) + 3(.43080)/13 = .46574.

û3, û4 are the same as in (28.8).

6.2 Repeated records model

This section is concerned with multiple records in a single trait and under the assumption
that

V ar


yi1

yi2

yi3
...

 =


1 r r · · ·
r 1 r · · ·
r r 1 · · ·
...

...
...

 σ2
y,

where y has been adjusted for random factors other than producing ability and random
error. The subscript i refers to a particular animal. The model is

y = Xβ + Zaa + Zpp + possibly other random factors + e.
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V ar

 a
p
e

 =

 Aσ2
a 0 0

0 Iσ2
p 0

0 0 Iσ2
e

 .
In an unselected population σ2

a = h2σ2
y, σ

2
p = (r− h2)σ2

y, σ2
e = (1− r)σ2

y, after adjusting y
for other random factors. As before b animals have progeny; c ≤ b of these have records.
These records number n1. Also as before d animals with records have no progeny. The
number of records made by these animals is n2.

First we state the model as described in Chapter 24. X, Za, Zb all have n1 +n2 rows.
The number of elements in a is b + d. The Za matrix is the same as in the conventional
model of Section 28.6.1 except that the row pertaining to an individual with records is
repeated as many times as there are records on that animal. The number of elements in p
is c+d corresponding to these animals with records. Zp would be an identity matrix with
order c + d if the c + d animals with records had made only one record each. Then the
row of this matrix corresponding to an animal is repeated as many times as the number
of records in that animal. Since Z

′
pZ

′
p +(Iσ2

p)−1 is diagonal, p̂ can be “absorbed” easily to
reduce the number of equations to b+ d plus the number of elements in β. The predicted
real producing ability of the ith animal is âi + p̂i, with p̂i = 0 for animals with no records.

Now we state the gametic model for repeated records. As for single records, a now
has b elements corresponding to the b animals with progeny. Za is exactly the same as
in the gametic model for single records except that the row pertaining to an animal is
repeated as many times as the number of records for that animal. As in the conventional
method for repeated records, p has c+ d elements and Zp is the same as in that model.

Now Mendelian sampling is taken care of in this model by altering V ar(p) rather
than V ar(e) as was done in the single record gametic model. For the parents V ar(p)
remains diagonal with the first c diagonals being σ2

p. The remaining d have the following
possible values.

(1) σ2
p + .5σ2

a if both parents are in a,

(2) σ2
p + .75σ2

a if one parent is in a,

(3) σ2
p + σ2

a if no parent is in a.

Again we can absorb “p” to obtain a set of equations numbering b plus the number of
elements in β, a reduction of c from the conventional equations. The computation of â
for the d animals with no progeny is simple.

âi = .5(sum of parental â) + kip̂i.

where ki = .5 σ2
a/(σ

2
p + .5σ2

a) for animals with 2 parents in a.

= .75σ2
a/(σ

2
p + .75σ2

a) for those with one parent in a.

= σ2
a/(σ

2
p + σ2

a) for those with no parent in a.
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These two methods for repeated records are illustrated with the same animals as in
Section 28.8 except now there are repeated records. The 4 animals have 2,3,1,2 records
respectively. These are (5,3,4,2,3,6,7,8). X′ = (1 2 3 1 2 2 3 2). Let

σ2
a = .25,

σ2
p = .20,

σ2
e = .55.

Then the regular mixed model equations are in (28.11).

65.455 5.455 10.909 3.636 9.091 5.455 10.909 3.636 9.091
10.970 2.0 −4.0 −2.667 3.636 0 0 0

11.455 −4.0 0 0 5.455 0 0
9.818 0 0 0 1.818 0

8.970 0 0 0 3.636
8.636 0 0 0

10.455 0 0
6.818 0

8.636



 β̂
â
p̂

 =



145.455
14.546
16.364
10.909
27.273
14.546
16.364
10.909
27.273


. (11)

Note that the right hand sides for â and p̂ are identical. The solution is

(1.9467, .8158, −.1972, .5660, 1.0377, .1113, −.3632, .4108, .6718). (12)

Next the solution for the gametic model is illustrated with the same data. The
incidence matrix is 

1 1 0 1 0 0 0
2 1 0 1 0 0 0
3 0 1 0 1 0 0
1 0 1 0 1 0 0
2 0 1 0 1 0 0
2 .5 .5 0 0 1 0
3 .5 0 0 0 0 1
2 .5 0 0 0 0 1
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corresponding to β, a1, a2, p1, p2, p3, p4.

V ar(e) = .55 I,

V ar(a) =

(
.25 0
0 .25

)
,

V ar(p) = diag (.2, .2, .325, .3875).

Then the mixed model equations are

65.454 11.818 12.727 5.454 10.909 3.636 9.091
9.0 .454 3.636 0 .909 1.818

9.909 0 5.454 .909 0
8.636 0 0 0

10.454 0 0
4.895 0

6.217




β̂
a1

a2

p1

p2

p3

p4


=



145.454
33.636
21.818
14.546
16.364
10.909
27.273


(13)

Note that the coefficient submatrix for p̂ is diagonal. The solution is

(1.9467, .8158, −.1972, .1113, −.3632, .6676, 1.3017). (14)

Note that β̂, â1, â2, p̂1, p̂2 are the same as in (28.12). Now

â3 = .5(.8158 − .1972) + .125 (.6676)/.325 = .5660.

â4 = .5(.8158) + .1875(1.3017)/.3875 = 1.0377.

These are the same results for â3 and â3 as (28.12).
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Chapter 29
Non-Additive Genetic Merit

C. R. Henderson

1984 - Guelph

1 Model for Genetic Components

All of the applications in previous chapters have been concerned entirely with additive
genetic models. This may be a suitable approximation, but theory exists that enables
consideration to be given to more complicated genetic models. This theory is simple for
non-inbred populations, for then we can formulate genetic merit of the animals in a sample
as

g =
∑
i

gi.

g is the vector of total genetic values for the animals in the sample. gi is a vector
describing values for a specific type of genetic merit. For example, g1 represents additive
values, g2 dominance values, g3 additive × additive, g4 additive by dominance, etc. In a
non-inbred, unselected population and ignoring linkage

Cov(gi,g
′
j) = 0

for all pairs of i 6= j.

V ar(additive) = Aσ2
a,

V ar(dominance) = Dσ2
d,

V ar(additive × additive) = A#Aσ2
aa,

V ar(additive × dominance) = A#Dσ2
ad,

V ar(additive × additive × dominance) = A#A#Dσ2
aad, etc.

The # operation on A and D is described below. These results are due mostly to Cock-
erham (1954). D is computed as follows. All diagonals are 1. dkm(k 6= m) is computed
from certain elements of A. Let the parents of k and m be g, h and i, j respectively. Then

dkm = .25(agiahj + agjahi). (1)

In a non-inbred population only one at most of the products in this expression can be
greater than 0. To illustrate suppose k and m are full sibs. Then g = i and h = j.

1



Consequently
dkm = .25[(1)(1) + 0] = .25.

Suppose k and m are double first cousins. Then

dkm = .25[(.5)(.5) + 0] = .0625.

For non-inbred paternal sibs from unrelated dams is

dkm = .25[1(0) + 0(0)] = 0,

and for parent-progeny dkm = 0.

The # operation on two matrices means that the new matrix is formed from the
products of the corresponding elements of the 2 matrices. Thus the ijth element of A#A
is a2

ij, and the ijth element of A#D is aijdij. These are called Hadamard products.
Accordingly, we see that all matrices for V ar(gi) are derived from A.

2 Single Record on Every Animal

We shall describe BLUP procedures and estimation of variances in this and subsequent
sections of Chapter 29 by a model with additive and dominance components. The ex-
tension to more components is straightforward. The model for y with no data missing
is

y = (X I I)

 β
a
d

+ e .

y is n x 1, X is n x p, both I are n x n, and e is n x 1, β is p x 1, a and d are n x 1.

V ar(a) = Aσ2
a,

V ar(d) = Dσ2
d,

V ar(e) = Iσ2
e .

Cov(a,d′), Cov(a, e′), and Cov(d, e′) are all n× n null matrices. Now the mixed model
equations are X′X X′ X′

X I + A−1σ2
e/σ

2
a I

X I I + D−1σ2
e/σ

2
d


 βo

â

d̂

 =

 X′y
y
y

 . (2)

Note that if a,d were regarded as fixed, the last n equations would be identical to the
p + 1, . . . , p + n equations, and we could estimate only differences among elements of
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a+d. An interesting relationship exists between â and d̂. Subtracting the third equation
of (29.2) from the second,

A−1σ2
e/σ

2
aâ−D−1σ2

e/σ
2
dd̂ = 0.

Therefore
d̂ = DA−1σ2

d/σ
2
aâ. (3)

This identity can be used to reduce (29.2) to(
X′X X′(I + DA−1σ2

d/σ
2
a)

X I + A−1σ2
e/σ

2
a + DA−1σ2

d/σ
2
a

)(
βo

â

)
=

(
X′y
y

)
. (4)

Note that the coefficient matrix of (29.4) is not symmetric. Having solved for â in (29.4)
compute d̂ by (29.3).

σ2
a, σ

2
d, σ

2
e can be estimated by MIVQUE. Quadratics needed to be computed and

equated to their expectations are

â′A−1â, d̂′D−1d̂, and ê′ê. (5)

To obtain expectations of the first two of these we need V ar(r), where r is the vector of
right hand sides of (29.2). This is X′AX X′A X′A

AX A A
AX A A

σ2
a +

 X′DX X′D X′D
DX D D
DX D D

σ2
d

+

 X′X X′ X′

X I I
X I I

σ2
e . (6)

From (29.6) we can compute V ar(â), V ar(d̂) as follows. Let some g-inverse of the matrix
of (29.2) be

C =

 Cβ

Ca

Cd

 .

Ca and Cd each have n rows. Then

â = Car,

and
d̂ = Cdr.

V ar(â) = Ca V ar(r)C′a, (7)

and
V ar(d̂) = Cd V ar(r)C′d. (8)
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E(â′A−1â) = trA−1 V ar(â). (9)

E(d̂′D−1d̂) = trD−1 V ar(d̂). (10)

For the expectation of ê′ê we compute tr(V ar(ê)). Note that

ê =

I− (X I I) C

 X′

I
I


y

= (I−XC11X
′ −XC12 −C′12X

′ −XC13 −C′13X
′

−C22 −C23 −C′23 −C33)y

≡ Ty (11)

where

C =

 C11 C12 C13

C′12 C22 C23

C′13 C′23 C33

 . (12)

Then
V ar(ê) = T V ar(y)T′. (13)

V ar(y) = Aσ2
a + Dσ2

d + Iσ2
e . (14)

REML by the EM type algorithm is quite simple to state. At each round of iteration
we need the same quadratics as in (29.5). Now we pretend that V ar(â), V ar(d̂), V ar(ê)
are represented by the mixed model result with true variance ratios employed. These are

V ar(â) = Aσ2
a −C22.

V ar(d̂) = Dσ2
d −C33.

V ar(ê) = Iσ2
e −WCW′.

C22, C33, C are defined in (29.12).

W = (X I I).

WCW′ can be written as I − T = XC11X
′ + XC12+ etc. From these “variances”

we iterate on
σ̂2
a = (â′A

−1
â + trA−1C22)/n, (15)

σ̂2
d = (d̂′D

−1
d̂ + trD−1C33)/n, (16)

and
σ̂2
e = (ê′ê + trWCW′)/n. (17)

This algorithm guarantees that at each round of iteration all estimates are non-negative
provided the starting values of σ2

e/σ
2
a, σ

2
e/σ

2
d are positive.

4



3 Single or No Record on Each Animal

In this section we use the same model as in Section 29.2, except now some animals have
no record but we wish to evaluate them in the mixed model solution. Let us order the
animals by the set of animals with no record followed by the set with records.

y = (X 0 I 0 I)


β
am
ap
dm
dp

+ e . (18)

The subscript, m, denotes animals with no record, and the subscript, p, denotes animals
with a record. Let there be np animals with a record and nm animals with no record.
Then y is np x 1, X is np x p, the 0 submatrices are both np x nm, and the I submatrices
are both np x np. The OLS equations are

X′X 0 X′ 0 X′

0 0 0 0 0
X 0 I 0 I
0 0 0 0 0
X′ 0 I 0 I




βo

âm
âp
d̂m
d̂p

 =


X′y
0
y
0
y

 . (19)

The mixed model equations are formed by adding A−1σ2
e/σ

2
a and D−1σ2

e/σ
2
d to the appro-

priate submatrices of matrix (29.19).

We illustrate these equations with a simple example. We have 10 animals with animals
1,3,5,7 not having records. 1,2,3,4 are unrelated, non-inbred animals. The parents of 5
and 6 are 1,2. The parents of 7 and 8 are 3,4. The parents of 9 are 6,7. The parents of
10 are 5,8. This gives

A =



1 0 0 0 .5 .5 0 0 .25 .25
1 0 0 .5 .5 0 0 .25 .25

1 0 0 0 .5 .5 .25 .25
1 0 0 .5 .5 .25 .25

1 .5 0 0 .25 .5
1 0 0 .5 .25

1 .5 .5 .25
1 .25 .5

1 .25
1



.

D = matrix with all 1’s in diagonal,

d56 = d65 = d78 = d87 = .25,
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d9,10 = d10,9 = .0625,

and all other elements = 0.
y′ = [6, 9, 6, 7, 4, 6].

X′ = (1 1 1 1 1 1).

Assuming that σ2
e/σ

2
a = 2.25 and σ2

e/σ
2
d = 5, the mixed model coefficient matrix with

animals ordered as in the A and D matrices is in (29.20) . . . (29.22). The right hand side
vector is [38, 0, 6, 0, 9, 0, 6, 0, 7, 4, 6, 0, 6, 0, 9, 0, 6, 0, 7, 4, 6]′. The solution is

βo = 6.400,

â′ = [−.203, −.256, −.141, .600, −.259, −.403, .056, .262, −.521, −.058],

and
d̂′ = (0, −.024, 0, .333, 0, 0, .014, .056, −.316, −.073).

Upper left 11 × 11

6. 0 1. 0 1. 0 1. 0 1. 1. 1.
4.5 2.25 0 0 −2.25 −2.25 0 0 0 0

5.5 0 0 −2.25 −2.25 0 0 0 0
4.5 2.25 0 0 −2.25 −2.25 0 0

5.5 0 0 −2.25 −2.25 0 0
5.625 0 0 1.125 0 −2.25

6.625 1.125 0 −2.25 0
5.625 0 −2.25 0

6.625 0 −2.25
5.5 0

5.5



. (20)

Upper right 10 × 10 and (lower left 10 × 11)′

0 1 0 1 0 1 0 1 1 1
0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1



. (21)
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Lower right 10 × 10

5.0 0 0 0 0 0 0 0 0 0
6.0 0 0 0 0 0 0 0 0

5.0 0 0 0 0 0 0 0
6.0 0 0 0 0 0 0

5.333 −1.333 0 0 0 0
6.333 0 0 0 0

5.333 −1.333 0 0
6.333 0 0

6.02 −.314
6.02



. (22)

If we wish EM type estimation of variances we iterate on

σ̂2
e = (y′y − y′Xβo − y′âp − y′d̂p)/[n− rank (X)],

σ̂2
a = (â′A−1â + trσ̂2

eCaa)/n,

and
σ̂2
d = (d̂′D−1d̂ + trσ̂2

eCdd)/n,

for
â′ = (â′m â′p),

d̂′ = (d̂′m d̂′p),

and n = number of animals. A g-inverse of (29.19) is Cxx Cxa Cxd

C′xa Caa Cad

C′xd C′ad Cdd

 .

Remember that in these computations V ar(e) = Iσ2
e and the equations are set up with

scaling, V ar(e) = I, V ar(a) = Aσ2
a/σ

2
e , V ar(d) = Dσ2

d/σ
2
e .

4 A Reduced Set of Equations

When there are several genetic components in the model, a much more efficient computing
strategy can be employed than that of Section 29.3. Let m be total genetic value of the
members of a population, and this is

m =
∑
i

gi,
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where gi is the merit for a particular type of genetic component, additive for example.
Then in a non-inbred population and ignoring linkage

V ar(m) =
∑
i

V ar(gi)

since
Cov(gi,g

′
j) = 0

for all i 6= j. Then a model is

y = Xβ + Zmm + e. (23)

We could, if we choose, add a term for other random components. Now mixed model
equations for BLUE and BLUP are(

X′R−1X X′R−1Zm

Z′mR−1X Z′mR−1Zm + [V ar(m)]−1

)(
βo

m̂

)
=

(
X′R−1y
Z′mR−1y

)
. (24)

If we are interested in BLUP of certain genetic components this is simply

ĝi = V ar(gi)[V ar(m)]−1m̂. (25)

This method is illustrated by the example of Section 29.2. Except for scaling

V ar(e) = I,

V ar(a) = 2.25−1A,

V ar(d) = 5−1D.

Then
V ar(m) = 2.25−1A + 5−1D

=



.6444 0 0 0 .2222 .2222 0 0 .1111 .1111
.6444 0 0 .2222 .2222 0 0 .1111 .1111

.6444 0 0 0 .2222 .2222 .1111 .1111
.6444 0 0 .2222 .2222 .1111 .1111

.6444 .2722 0 0 .1111 .2222
.6444 0 0 .2222 .1111

.6444 .2722 .2222 .1111
.6444 .1111 .2222

.6444 .1236
.6444



. (26)

Adding the inverse of this to the lower 10 × 10 block of the OLS equations of (29.27) we
obtain the mixed model equations. The OLS equations including animals with missing
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records are 

6 0 1 0 1 0 1 0 1 1 1
0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

1 0 0 0 0 0 0
0 0 0 0 0 0

1 0 0 0 0
0 0 0 0

1 0 0
1 0

1



(
µ̂
m̂

)
=



38
0
6
0
9
0
6
0
7
4
6



. (27)

The resulting solution is
µ̂ = 6.400 as before, and

m̂ = [−.203, −.280, −.141, .933, −.259, −.402, .070, .319, −.837, −.131]′.

From m̂ and using the method of (29.25) we obtain the same solution to â and d̂ as
before.

To obtain REML estimates identical to those of Section 29.4 compute the same
quantities except σ̂2

e can be computed by

σ̂2
e = (y′y − y′Xβo − y′Zmm̂)/[n− rank (X)].

Then â and d̂ are computed from m̂ as described in this section. With the scaling done

G = Aσ2
a/σ

2
e + Dσ2

d/σ
2
e ,

Caa = (σ2
a/σ

2
e)A− (σ2

a/σ
2
e)AG−1(G−Cmm)G−1A(σ2

a/σ
2
e),

Cdd = (σ2
d/σ

2
e)D− (σ2

d/σ
2
e)DG−1(G−Cmm)G−1D(σ2

d/σ
2
e),

where a g-inverse of the reduced coefficient matrix is(
Cxx Cxm

C′xm Cmm

)
.

In our example Caa for both the extended and the reduced equations is

.4179 −.0001 .0042 .0224 .2057 .1856 .0112 .0196 .0942 .1062
.3651 .0224 .0571 .1847 .1802 .0428 .0590 .1176 .1264

.4179 −.0001 .0112 .0196 .2057 .1856 .1062 .0942
.3651 .0428 .0590 .1847 .1802 .1264 .1176

.4100 .1862 .0287 .0365 .1108 .2084
.3653 .0365 .0618 .1953 .1305

.4100 .1862 .2084 .1108
.3653 .1305 .1953

.3859 .1304
.3859


.
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Similarly Cdd is

.2 0 0 0 0 0 0 0 0 0
.1786 0 .0034 .0016 .0064 0 .0030 .0045 .0047

.2 0 0 0 0 0 0 0
.1786 .0008 .0030 0 .0064 .0047 .0045

.1986 .0444 0 .0007 .0016 .0011
.1778 0 .0027 .0062 .0045

.2 0 0 0
.1778 .0047 .0062

.1778 .0136
.1778



.

Caa and Cdd have rather large rounding errors.

5 Multiple or No Records

Next consider a model with repeated records and the traditional repeatability model.
That is, all records have the same variance and all pairs of records on the same animal
have the same covariance. Ordering the animals with no records first the model is

y = [X 0 Z 0 Z Z](β : am : ap : dm : dp t)′ + e. (28)

y is n x 1, X is n x p, the null matrices are n x nm, Z is n x np. n is the number of records,
nm the number of animals with no record, and np the number of animals with 1 or more
records. am, ap refer to a for animals with no records and with records respectively, and
similarly for dm and dp. t refers to permanent environmental effects for animals with
records.

V ar(a) = Aσ2
a,

V ar(d) = Dσ2
d,

V ar(t) = Iσ2
t ,

V ar(e) = Iσ2
e .

These 4 vectors are uncorrelated. The OLS equations are



X′X 0 X′Z 0 X′Z X′Z
0 0 0 0 0 0

Z′X 0 Z′Z 0 Z′Z Z′Z
0 0 0 0 0 0

Z′X 0 Z′Z 0 Z′Z Z′Z
Z′X 0 Z′Z 0 Z′Z Z′Z





βo

âm
âp
d̂m
d̂p
t̂


=



X′y
0

Z′y
0

Z′y
Z′y


(29)
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The mixed model equations are formed by adding A−1σ2
e/σ

2
a, D−1σ2

e/σ
2
d, and Iσ2

e/σ
2
t to

appropriate blocks in (29.29).

We illustrate with the same 10 animals as in the preceding section, but now there are
multiple records as follows.

Records
Animals 1 2 3

1 X X X
2 6 5 4
3 X X X
4 9 8 X
5 X X X
6 6 5 6
7 X X X
8 7 3 X
9 4 5 X
10 6 X X

X denotes no record. We assume that the first records have a common mean β1, the
second a common mean β2, and the third a common mean β3. It is assumed that σ2

e/σ
2
a

= 1.8, σ2
e/σ

2
d = 4, = σ2

e/σ
2
t = 4. Then the mixed model coefficient matrix is in (29.30)

. . . (29.32). The right hand side vector is (38, 26, 10, 0, 15, 0, 17, 0, 17, 0, 10, 9, 6, 0, 15,
0, 17, 0, 17, 0, 10, 9, 6, 15, 17, 17, 10, 9, 6)’. The solution is

βo′ = (6.398, 5.226, 5.287),

â′ = (−.067, −.295, −.364, .726, −.201, −.228, .048, −.051,

−.355, −.166),

d̂′ = (0, −.103, 0, .491, .019, .077, −.048, −.190, −.241,

−.051),

t̂′ = (−.103, .491, .077, −.190, −.239, −.036).

t̂ refers to the six animals with records. BLUP of the others is 0.
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Upper left 13 × 13

6.0 0 0 0 1.0 0 1.0 0 1.0 0 1.0 1.0 1.0
5.0 0 0 1.0 0 1.0 0 1.0 0 1.0 1.0 0

2.0 0 1.0 0 0 0 1.0 0 0 0 0
3.6 1.8 0 0 −1.8 −1.8 0 0 0 0

6.6 0 0 −1.8 −1.8 0 0 0 0
3.6 1.8 0 0 −1.8 −1.8 0 0

5.6 0 0 −1.8 −1.8 0 0
4.5 0 0 .9 0 −1.8

7.5 .9 0 −1.8 0
4.5 0 −1.8 0

6.5 0 −1.8
5.6 0

4.6



(30)

Upper right 13 × 16 and (lower left 16 × 13)’

0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1 1 0 1 1 1 1 1 0
0 1 0 0 0 1 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 3 0 0 0 0 0 0 0 0 3 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0 0 0 2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 3 0 0 0 0 0 0 3 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 2 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 2 0 0 0 0 0 2 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1



(31)
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Lower right 16 × 16

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 3 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 2 0 0 0 0

4.267 −1.067 0 0 0 0 0 0 0 0 0 0
7.267 0 0 0 0 0 0 0 0 0 0

4.267 −1.067 0 0 0 0 0 0 0 0
6.267 0 0 0 0 0 2 0 0

6.016 −.251 0 0 0 0 2 0
5.016 0 0 0 0 0 1

7 0 0 0 0 0
6 0 0 0 0

7 0 0 0
6 0 0

6 0
5



(32)

6 A Reduced Set of Equations for Multiple Records

As in Section 29.4 we can reduce the equations by now letting

m =
∑
i

gi + t,

where gi have the same meaning as before, and t is permanent environmental effect with
V ar(t) = Iσ2

t . Then the mixed model equations are like those of (29.24) and from m̂ one
can compute ĝi and t̂.

Using the same example as in Section 29.5 the OLS equations are

6 0 0 0 1 0 1 0 1 0 1 1 1
5 0 0 1 0 1 0 1 0 1 1 0

2 0 1 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

2 0 0 0 0 0 0
0 0 0 0 0 0

3 0 0 0 0
0 0 0 0

2 0 0
2 0

1




µ̂1

µ̂2

µ̂3

m̂

 =



38
26
10
0

15
0

17
0

17
0

10
9
6



.
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Now with scaling V ar(e) = I.

V ar(m) = 1.8−1A + .25D + .25I

=
1

576



608 0 0 0 160 160 0 0 80 80
608 0 0 160 160 0 0 .80 80

608 0 0 0 160 160 80 80
608 0 0 160 160 80 80

608 196 0 0 80 160
608 0 0 160 80

608 196 160 80
608 80 160

608 89
608



.

Adding the inverse of this to the lower 10 × 10 block of the OLS equations we obtain the
mixed model equations. The solution is

(µ̂1, µ̂2, µ̂3) = (6.398, 5.226, 5.287),

the same as before, and

m̂ = (−.067, −.500, −.364, 1.707, −.182, −.073, .001,

−.431, −.835, −.253)′.

Then
â = V ar(a)[V ar(m)]−1m̂ = same as before.

d̂ = V ar(d)[V ar(m)]−1m̂ = same as before.

t̂ = V ar(t)[V ar(m)]−1m̂ = same as before

recognizing that t̂i for an animal with no record is 0.

To compute EM type REML iterate on

σ2
e = [y′y − (soln. vector)′rhs]/[n− rank(X)].

Compute Caa, Cdd, Ctt as in Section 29.4. Now, however, Ctt will have dimension, 10,
rather than 6 in order that the matrix of the quadratic in t̂ at each round of iteration will
be I. If we did not include missing ti, a new matrix would need to be computed at each
round of iteration.

14



Chapter 30
Line Cross and Breed Cross Analyses

C. R. Henderson

1984 - Guelph

This chapter is concerned with a genetic model for line crosses, BLUP of crosses, and
estimation of variances. It is assumed that a set of unselected inbred lines is derived from
some base population. Therefore the lines are assumed to be uncorrelated.

1 Genetic Model

We make the assumption that the total genetic variance of a population can be parti-
tioned into additive + dominance + (additive × additive) + (additive × dominance),
etc. Further, in a non-inbred population these different sets of effects are mutually un-
correlated, e.g., Cov (additive, dominance) = 0. The covariance among sets of effects can
be computed from the A matrix. Methods for computing A are well known. D can be
computed as described in Chapter 29.

V ar(additive effects) = Aσ2
a.

V ar(dominance effects) = Dσ2
d.

V ar(additive × dominance) = A#Dσ2
ad.

V ar(additive × additive × dominance) = A#A#Dσ2
aad, etc.

# denotes the operation of taking the product of corresponding elements of 2 matrices.
Thus the ijth element of A#D is aijdij.

2 Covariances Between Crosses

If lines are unrelated, the progeny resulting from line crosses are non-inbred and conse-
quently the covariance matrices for the different genetic components can be computed for
the progeny. Then one can calculate BLUP for these individual animals by the method
described in Chapter 29. With animals as contrasted to plants it would seem wise to
include a maternal influence of line of dam in the model as described below. Now in order
to reduce computational labor we shall make some simplifying assumptions as follows.

1



1. All members of all lines have inbreeding coefficient = f .

2. The lines are large enough that two random individuals from the same line are unre-
lated except for the fact that they are members of the same line.

Consequently, the A matrix for members of the same line is
1 + f 2f

. . .

2f 1 + f

 .
From this result we can calculate the covariance between any random pair of individuals
from the same cross or a random individual of one cross with a random individual of
another cross. We illustrate first with single crosses. Consider line cross, 1 × 2, line 1
being used as the sire line. Two random progeny pedigrees can be visualized as

1a 1b
↘ ↘

pa pb
↗ ↗

2a 2b

Therefore

a1a,1b = a2a,2b = 2f.

apa,pb = .25(2f + 2f) = f.

dpa,pb = .25[2f(2f) + 0(0)] = f 2.

Then the genetic covariance between 2 random members of any single cross is equal to
the genetic variance of single cross means

= fσ2
a + f 2σ2

d + f 2σ2
aa + f 3σ2

ad + etc.

Note that if f = 1, this simplifies to the total genetic variance of individuals in the
population from which the lines were derived.

Next consider the covariance between crosses with one common parental line, say 1
× 2 with 1 × 3.

1a 1b
↘ ↘

pa pb

↗ ↗
2a 3b

2



As before, a1a,1b = 2f, but all other relationships among parental pairs are zero. Then

apa,pb = .25(2f) = .5f.

dpa,pb = 0.

Covariance = .5fσ2
a + .25f 2σ2

aa + ..., etc.

Next we consider 3 way crosses. Represent 2 random members of a 3 way cross (1 ×
2) × 3 by

1a 1b
↘ ↘

xa xb
↗ ↘ ↗ ↘

2a pa 2b pb
↗ ↗

3a 3b

Non-zero additive relationships are

(1a, 1b) = (2a, 2b) = (3a, 3b) = 2f, and

(xa, xb) = f,

(pa, pb) = .25(f + 2f) = .75f,

and the dominance relationship is

(pa, pb) = .25[f(2f) + 0(0)] = .5f 2.

Thus the genetic variance of 3 way crosses is

3

4
fσ2

a +
1

2
f 2σ2

d +
3

8
f 3σ2

ad +
9

16
f 2σ2

aa + . . . etc.

The covariance between a single cross and a 3 way cross depends upon the way the
crosses are made.

For a (1 × 2) × 3 with 1 × 2 is f/2, and d is 0.

For a (1 × 2) × 3 with 1 × 3 is .75f , and d is .5f 2.

The variance of 4 way crosses is .5 fσ2
a + .25 f 2σ2

d + . . . etc. The variance of top
crosses with an inbred line as a parent is .5 fσ2

a + (0)σ2
d + etc.

If we know the magnitude of the various components of genetic variance, we can
derive the variance of any line cross or the covariance between any pair of line crosses.
Then these can be used to set up mixed model equations. One must be alert to the
possibility that some of the variance-covariance matrices of genetic components may be
singular.
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3 Reciprocal Crosses Assumed Equal

This section is concerned with a model in which the cross, line i × line j, is assumed the
same as the cross, line j × line i. The model is

yijk = x
′

ijkβ + cij + eijk.

Var(c) has this form

V ar(cij) = fσ2
a + f 2σ2

d + f 3σ2
ad + etc.

= Cov(cij, cji).

Cov(cij, cij′) = Cov(cij, cji′) = .5 fσ2
a + .25 f 2σ2

aa + . . . etc.

Cov(cij, ci′j′) = 0.

We illustrate BLUP with single crosses among 4 lines with f = .6, σ2
a = .4, σ2

d = .3,
σ2

e = 1. All other genetic covariances are ignored. β = µ. The number of observations
per cross and yij, are

nij yij.

X 5 3 2 X 6 4 7
4 X 6 3 5 X 3 8
4 2 X 5 6 7 X 3
2 3 9 X 5 6 4 X

X denotes no observation. The OLS equations are in (30.1). Note that aij is combined
with aji to form the variable aij and similarly for d.

48 9 7 4 8 6 14 9 7 4 8 6 14
9 0 0 0 0 0 9 0 0 0 0 0

7 0 0 0 0 0 7 0 0 0 0
4 0 0 0 0 0 4 0 0 0

8 0 0 0 0 0 8 0 0
6 0 0 0 0 0 6 0

14 0 0 0 0 0 14
9 0 0 0 0 0

7 0 0 0 0
4 0 0 0

8 0 0
6 0

14





µ
a12

a13

a14

a23

a24

a34

d12

d13

d14

d23

d24

d34



=



235
50
36
24
32
42
51
50
36
24
32
42
51



(1)

4



V ar(a) =



.24 .12 .12 .12 .12 0
.24 .12 .12 0 .12

.24 0 .12 .12
.24 .12 .12

.24 .12
.24


, V ar(d) = .108 I.

V ar(a) is singular. Consequently we pre-multiply equation (30.1) by 1 0 0
0 V ar(a) 0
0 0 I


and add  0 0 0

0 I 0
0 0 [V ar(d)]−1


to the resulting coefficient matrix. The solution to these equations is

µ̂ = 5.1100,

â′ = (.5528, −.4229, .4702, −.4702, .4229, −.5528),

d̂′ = (−.0528, .1962, .1266, −.2965, .5769, −.5504).

Note that
∑
d̂ = 0. Now the predicted future progeny average of the ijth and jith cross

is
µ∗ + âij + d̂ij,

where µ∗ is the fixed part of the model for future progeny.

If we want to predict the future progeny mean of a cross between i × k or between
k× i, where k is not in the sample, we can do this by selection index methods using â, d̂
as the “data” with variances and covariances applying to a+d rather than a. See Section
5.9. For example the prediction of the 1 × 5 cross is

(.12 .12 .12 0 0 0)



.348 .12 .12 .12 .12 0
.348 .12 .12 0 .12

.348 0 .12 .12
.348 .12 .12

.348 .12
.348



−1

(â + d̂). (2)

If we were interested only in prediction of crosses among the lines 1 2, 3, 4, we could
reduce the mixed model equations to solve for â + d̂ jointly. Then there would be only 7
equations. The 6 × 6 matrix of (30.2) would be G−1 to add to the lower 6 × 6 submatrix
of the least squares coefficient matrix.
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4 Reciprocal Crosses With Maternal Effects

In most animal breeding models one would assume that because of maternal effects the
ijth cross would be different from the jith. Now the genetic model for maternal effects
involves the genetic merit with respect to maternal of the female line in a single cross.
This complicates statements of the variances and covariances contributed by different
genetic components since the lines are inbred. The statement of σ2

a is possible but not
the others. The contribution of σ2

a is

Covariance between 2 progeny of the same cross = 2fσ2
a ,

Covariance between progeny of i× j with k × j = .5fσ2
a,

where the second subscript denotes the female line. Consequently if we ignore other
components, we need only to add mj to the model with V ar(m) = Iσ2

m . We illustrate
with the same data as in Section 30.3 with V ar(m) = .5 I. The OLS equations now are
in (30.3). Now we pre-multiply these equations by

1 0 0 0
0 V ar(a) 0 0
0 0 I 0
0 0 0 I

 .

Then add to the resulting coefficient matrix
0 0 0 0
0 I 0 0
0 0 [V ar(d)]−1 0
0 0 0 [V ar(m)]−1

 .

The resulting solution is

µ̂ = 5.1999,

â′ = (.2988, −.2413, .3217, −.3217, .2413, −.2988),

d̂′ = (−.1737, .2307, .1136, −.1759, .4479, −.4426),

and

m̂′ = (.0560, .6920, −.8954, .1475).
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48 9 7 4 8 6 14 9 7 4 8 6 14 10 10 18 10
9 0 0 0 0 0 9 0 0 0 0 0 4 5 0 0

7 0 0 0 0 0 7 0 0 0 0 4 0 3 0
4 0 0 0 0 0 4 0 0 0 2 0 0 2

8 0 0 0 0 0 8 0 0 0 2 6 0
6 0 0 0 0 0 6 0 0 3 0 3

14 0 0 0 0 0 14 0 0 9 5
9 0 0 0 0 0 4 5 0 0

7 0 0 0 0 4 0 3 0
4 0 0 0 2 0 0 2

8 0 0 0 2 6 0
6 0 0 3 0 3

14 0 0 9 5
10 0 0 0

10 0 0
18 0

10




µ̂
a
d
m



= (235, 50, 36, 24, 32, 42, 51, 50, 36, 24, 32, 42, 51, 54, 62, 66, 53)′. (3)

5 Single Crosses As The Maternal Parent

If single crosses are used as the maternal parent in crossing, we can utilize various compo-
nents of genetic variation with respect to maternal effects, for then the maternal parents
are non-inbred.

6 Breed Crosses

If one set of breeds is used as males and a second different set is used as females in a
breed cross, the problem is the same as for any two way fixed cross-classified design with
interaction and possible missing subclasses. If there is no missing subclass, the weighted
squares of means analysis would seem appropriate, but with small numbers of progeny
per cross, yij may not be the optimum criterion for choosing the best cross. Rather, we
might choose to treat the interaction vector as a pseudo-random variable and proceed
to a biased estimation that might well have smaller mean squared error than the yij. If
subclasses are missing, this biased procedure enables finding a biased estimator of such
crosses.
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7 Same Breeds Used As Sires And Dams

If the same breeds are used as sires and as dams and with progeny of some or all of the
pure breeds included in the design, the analysis can be more complicated. Again one
possibility is to evaluate a cross or pure line simply by the subclass mean. However,
most breeders have attempted a more complicated analysis involving, for example, the
following model for µij the true mean of the cross between the ith sire breed and the jth

dam breed.

µij = µ+ si + dj + γij + p if i = j

= µ+ si + dj + γij if i 6= j.

From the standpoint of ranking crosses by BLUE, this model is of no particular value,
for even with filled subclasses the rank of the coefficient matrix is only b2, where b is the
number of breeds. A solution to the OLS equations is

µo = so = do = po = 0

γ̂ij = yij.

Thus BLUE of a breed cross is simply yij, provided nij > 0. The extended model provides
no estimate of a missing cross since that is not estimable. In contrast, if one is prepared
to use biased estimation, a variety of estimates of missing crosses can be derived, and
these same biased estimators may, in fact, be better estimators of filled subclasses than
yij. Let us restrict ourselves to estimators of µij that have expectation, µ + si + dj + p
+ linear function of γ if i = j, or µ + si + dj + linear function of γ if i 6= j. Assume that
the γii are different from the γij (i 6= j). Accordingly, let us assume for convenience that

b∑
j=1

γij = 0 for i = 1, . . . , b,

b∑
i=1

γij = 0 for j = 1, . . . , b, and

b∑
i=1

γii = 0.

Next permute all labelling of breeds and compute the average squares and products of
the γij. These have the following form:

Av.(γii)
2 = d.

Av.(γij)
2 = c.

Av.(γii γjj) = −d/(b− 1).

8



Av.(γij γik) = Av.(γij γkj) =
d− c(b− 1)

(b− 1)(b− 2)
.

Av.(γii γij) = −d/(b− 1).

Av.(γii γji) = −d/(b− 1).

Av.(γij γji) = r.

Av.(γii γjk) = 2d/(b− 1)(b− 2).

Av.(γij γki) =
d− r(b− 1)

(b− 1)(b− 2)
.

Av.(γij γkl) =
(c+ r)(b− 1)− 4d

(b− 1)(b− 2)(b− 3)
.

Av.(γij γjk) = Av.(γij γki).

These squares and products comprise a singular P matrix which could then be used in
pseudo-mixed model equations. This would, of course, require estimating d, c, r from the
data. Solving the resulting mixed model type equations,

µ̂ii = µo + so
i + do

i + γ̂ii + po,

µ̂ij = µo + so
i + do

i + γ̂ij,

when i 6= j.

A simpler method is to pretend that the model for µij is

µij = µ+ si + dj + γij + r(i,j),

when i 6= j, and
µii = µ+ si + dj + γii + p.

r has b(b−1)/2 elements and (ij) denotes i < j. Thus the element of r for µij is the same
as for µji. Then partition γ into the γii elements and the γij elements and pretend that
γ and r are random variables with

V ar


γ11

γ22
...

 = Iσ2
1, V ar


γ12

γ13
...

 = Iσ2
2, V ar(r) = Iσ2

3.

The covariances between these three vectors are all null. Then set up and solve the mixed
model equations. With proper choices of values of σ2

1, σ2
2, σ2

3 relative to b, d, c, r the
estimates of the breed crosses are identical to the previous method using singular P. The
latter method is easier to compute and it is also much easier to estimate σ2

1, σ2
2, σ2

3 than
the parameters of P. For example, we could use Method 3 by computing appropriate
reductions and equating to their expectations.

We illustrate these two methods with a 4 breed cross. The nij and yij. were as follows.
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nij yij.

5 2 3 1 6 3 2 7
4 2 6 7 8 3 5 6
3 5 2 8 9 4 7 3
4 2 3 4 2 6 8 6

Assume that P is the following matrix, (30.4) . . . (30.6). V ar(e) = I. Then we premultiply
the OLS equations by (

I 0
0 P

)
and add I to the last 16 diagonal coefficients.

Upper 8 × 8 

1.8 −.6 −.6 −.6 −.6 −.6 .6 .6
4.48 −1.94 −1.94 .88 −.6 −.14 −.14

4.48 −1.94 −.14 .6 −1.94 1.48
4.48 −.14 .6 1.48 −1.94

4.48 −.6 −1.94 −1.94
1.8 −.6 −.6

4.48 −1.94
4.48


(4)

Upper right 8 × 8 and (lower left 8 × 8)’

−.6 .6 −.6 .6 −.6 .6 .6 −.6
−.14 −1.94 .6 1.48 −.14 −1.94 1.48 .6
.88 −.14 −.6 −.14 −.14 1.48 −1.94 .6
−.14 1.48 .6 −1.94 .88 −.14 −.14 −.6
−1.94 −.14 .6 1.48 −1.94 −.14 1.48 .6

.6 −.6 −.6 .6 .6 −.6 .6 −.6
−.14 .88 −.6 −.14 1.48 −.14 −1.94 .6
1.48 −.14 .6 −1.94 −.14 .88 −.14 −.6


(5)

Lower right 8 × 8

4.48 −1.94 −.6 −1.94 −1.94 1.48 −.14 .6
4.48 −.6 −1.94 1.48 −1.94 −.14 .6

1.8 −.6 .6 .6 −.6 −.6
4.48 −.14 −.14 .88 −.6

4.48 −1.94 −1.94 −.6
4.48 −1.94 −.6

4.48 −.6
1.8


(6)
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A solution to these equations is

µo = 0,

so = (2.923, 1.713, 2.311, 2.329)′,

do = (−.652, −.636, −.423, 0)′,

po = .007.

γ̂ in tabular form is 
−1.035 −.754 −1.749 3.538
.898 .377 −.434 −.841

1.286 −.836 1.453 −1.902
−1.149 1.214 .729 −.795

 .
The resulting µ̂ij are 

1.243 1.533 .752 6.462
1.959 1.461 .857 .872
2.945 .839 3.349 .409
.528 2.908 2.635 1.541

 .
Note that these µ̂ij 6= yij but are not markedly different from them. The same µ̂ij can be
obtained by using

V ar(γii) = −2.88 I,

V ar(γij) = 7.2 I,

V ar(r) = 2.64 I.

The solution to these mixed model equations is different from before, but the resulting
µ̂ij are identical. Ordinarily one would not accept a negative “variance”. The reason for
this in our example was a bad choice of the parameters of P. The OLS coefficient matrix
for this solution is in (30.7) . . . (30.9). The right hand sides are (18, 22, 23, 22, 25, 16,
22, 22, 6, 3, 2, 7, 8, 3, 5, 6, 9, 4, 7, 3, 2, 6, 8, 6, 11, 11, 9, 9, 12, 11). µo and do

4 are
deleted giving a solution of 0 for them. The OLS equations for the preceding method are
the same as these except the last 6 equations and unknowns are deleted. The solution is

µo = 0,

so = (1.460, 1.379, 2.838, 1.058)′,

do = (−.844, .301, 1.375, 0)′,

po = .007,

ro = (.253, −.239, 1.125, −.888, .220, −.471)′.

γ̂ in tabular form =


.621 −.481 −1.844 3.877

1.172 −.226 −1.009 −.727
1.191 −1.412 −.872 −1.958
−.810 1.328 .673 .477

 .
This solution gives the same result for µ̂ij as before.
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Upper left 15 × 15

11 0 0 0 5 2 3 5 5 2 3 1 0 0 0
19 0 0 4 2 6 2 0 0 0 0 4 2 6

18 0 3 5 2 2 0 0 0 0 0 0 0
13 4 2 3 4 0 0 0 0 0 0 0

16 0 0 5 5 0 0 0 4 0 0
11 0 2 0 2 0 0 0 2 0

14 2 0 0 3 0 0 0 6
13 5 0 0 0 0 2 0

5 0 0 0 0 0 0
2 0 0 0 0 0

3 0 0 0 0
1 0 0 0

4 0 0
2 0

6



. (7)

Upper right 15 × 15 and (lower left 15 × 15)’

0 0 0 0 0 0 0 0 0 2 3 1 0 0 0
7 0 0 0 0 0 0 0 0 4 0 0 6 7 0
0 3 5 2 8 0 0 0 0 0 3 0 5 0 8
0 0 0 0 0 4 2 3 4 0 0 4 0 2 3
0 3 0 0 0 4 0 0 0 4 3 4 0 0 0
0 0 5 0 0 0 2 0 0 2 0 0 5 2 0
0 0 0 2 0 0 0 3 0 0 3 0 6 0 3
0 0 0 2 0 0 0 0 4 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 3 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 4 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 6 0 0



. (8)
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Lower right 15 × 15

7 0 0 0 0 0 0 0 0 0 0 0 0 7 0
3 0 0 0 0 0 0 0 0 3 0 0 0 0

5 0 0 0 0 0 0 0 0 0 5 0 0
2 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 8
4 0 0 0 0 0 4 0 0 0

2 0 0 0 0 0 0 2 0
3 0 0 0 0 0 0 3

dg (4 6 6 5 11 9 11)


(9)

The method just preceding is convenient for missing subclasses. In that case γij

associated with nij = 0 are included in the mixed model equations.
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Chapter 31
Maternal Effects

C. R. Henderson

1984 - Guelph

Many traits are influenced by the environment contributed by the dam. This is
particularly true for traits measured early in life and for species in which the dam nurses
the young for several weeks or months. Examples are 3 month weights of pigs, 180 day
weights of beef calves, and weaning weights of lambs. In fact, genetic merit for maternal
ability can be an important trait for which to select. This chapter is concerned with some
models for maternal effects and with BLUP of them.

1 Model For Maternal Effects

Maternal effects can be estimated only through the progeny performance of a female or the
progeny performance of a related female when direct and maternal effects are uncorrelated.
If they are correlated, maternal effects can be evaluated whenever direct can be. Because
the maternal ability is actually a phenotypic manifestation, it can be regarded as the sum
of a genetic effect and an environmental effect. The genetic effect can be partitioned at
least conceptually into additive, dominance, additive × additive, etc. components. The
environmental part can be partitioned, as is often done for lactation yield in dairy cows,
into temporary and permanent environmental effects. Some workers have suggested that
the permanent effects can be attributed in part to the maternal contribution of the dam
of the dam whose maternal effects are under consideration.

Obviously if one is to evaluate individuals for maternal abilities, estimates of the
underlying variances and covariances are needed. This is a difficult problem in part due
to much confounding between maternal and direct genetic effects. BLUP solutions are
probably quite sensitive to errors in estimates of the parameters used in the prediction
equations. We will illustrate these principles with some examples.
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2 Pedigrees Used In Example

Individual
No. Sex Sire Dam Record
1 Male Unknown Unknown 6
2 Female Unknown Unknown 9
3 Female 1 2 4
4 Female 1 2 7
5 Male Unknown Unknown 8
6 Male Unknown Unknown 3
7 Male 6 3 6
8 Male 5 4 8

This gives an A matrix as follows:

1 0 .5 .5 0 0 .25 .25
1 .5 .5 0 0 .25 .25

1 .5 0 0 .5 .25
1 0 0 .25 .5

1 0 0 .5
1 .5 0

1 .125
1


.

The corresponding dominance relationship matrix is a matrix with 1’s in the diagonals,
and the only non-zero off-diagonal element is that for d34 = .25.

For our first example we assume a model with both additive direct and additive
maternal effects. We assume that σ2

e = 1, σ2
a (direct) = .5, σ2

a (maternal) = .4, covariance
direct with maternal = .2. We assume Xβ = 1µ. In all of our examples we have
assumed that the permanent environmental contribution to maternal effects is negligible.
If one does not wish to make this assumption, a vector of such effects can be included.
Its variance is Iσ2

p, and is assumed to be uncorrelated with any other variables. Then
permanent environmental effects can be predicted only for those animals with recorded
progeny. Then the incidence matrix excluding p is

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0


(1)
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Cols. 2-9 represent a and cols 10-17 represent m. This gives the following OLS equations.

8 1 1 1 1 1 1 1 1 0 2 1 1 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0 0 0 0

1 0 0 0 0 0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0

1 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0

2 0 0 0 0 0 0
1 0 0 0 0 0

1 0 0 0 0
0 0 0 0

0 0 0
0 0

0



 µ̂
â
m̂

 =



51
6
9
4
7
8
3
6
8
0

11
6
8
0
0
0
0



. (2)

G =

(
.5A .2A
.2A .4A

)
.

Adding the inverse of G to the lower 16 × 16 submatrix of (31.2) gives the mixed model
equations, the solution to which is

µ̂ = 6.386,

â = (−.241, .541, −.269, .400, .658, −1.072, −.585, .709)′,

m̂ = (.074, −.136, −.144, .184, .263, −.429, −.252, .296)′.

In contrast, if covariance (a,m′) = 0, the maternal predictions of 5 and 6 are 0. With
σ2

a = .5, σ2
m = .4, σ2

am = 0 the solution is

µ̂ = 6.409,

â = (−.280, .720, −.214, .440, .659, −1.099, −.602, .742)′,

m̂ = (.198, −.344, −.029, .081, 0, 0, −.014, .040)′.

Note now that 5 and 6 cannot be evaluated for m since they are males and have no female
relatives with progeny.
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3 Additive And Dominance Maternal And Direct Ef-

fects

If we assume that additive and dominance affect both direct and maternal merit, the
incidence matrix of (31.1) is augmented on the right by the last 16 columns of (31.1)
giving an 8 × 33 matrix. Assume the same additive direct and maternal parameters as
before and let the dominance parameters be .3 for direct variance, .2 for maternal, and .1
for their covariance. Then

G =


.5A .2A 0 0
.2A .4A 0 0

0 0 .3D .1D
0 0 .1D .2D

 .

The solution is

µ̂ = 6.405,

a direct = (−.210, .478, −.217, .350, .545, −.904, −.503, .588)′,

a maternal = (.043, −.083, −.123, .156, .218, −.362, −.220, .243)′,

d direct = (−.045, .392, −.419, .049, .242, −.577, .069, .169)′,

d maternal = (−.015, −.078, −.078, .119, .081, −.192, .023, .056)′.

Quadratics to compute to estimate variances and covariances by MIVQUE would be

â(direct)′A−1â(direct),
â(direct)′A−1â(maternal),
â(maternal)′A−1â(maternal),

d̂(direct)′D−1d̂(direct),

d̂(direct)′D−1d̂(maternal),

d̂(maternal)′D−1d̂(maternal),
ê′ê.

Of course the data of our example would be quite inadequate to estimate these variances
and covariances.
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Chapter 32
Three Way Mixed Model

C. R. Henderson

1984 - Guelph

Some of the principles of preceding chapters are illustrated in this chapter using an
unbalanced 3 way mixed model. The method used here is one of several alternatives that
appeals to me at this time. However, I would make no claims that it is “best”.

1 The Example

Suppose we have a 3 way classification with factors denoted by A,B,C. The levels of A
are random and those of B and C are fixed. Accordingly a traditional mixed model would
contain factors and interactions as follows, a, b, c, ab, ac, bc, abc with b, c, and bc fixed, and
the others random. The subclass numbers are as follows.

BC subclasses
A 11 12 13 21 22 23 31 32 33
1 5 2 3 6 0 3 2 5 0
2 1 2 4 0 5 2 3 6 0
3 0 4 8 2 3 5 7 0 0

The associated ABC subclass means are 3 5 2 4 − 8 9 2 −
5 6 7 − 8 5 2 6 −
− 9 8 4 3 7 5 − −

 .

Because there are no observations on bc33, estimates and tests of b, c, and b×c that mimic
the filled subclass case cannot be accomplished using unbiased estimators. Accordingly,
we might use some prior on squares and products of bcjk and obtain biased estimators.
Let us assume the following prior values, σ2

e/σ
2
a = 2, σ2

e/σ
2
ab = 3, σ2

e/σ
2
ac = 4, σ2

e/pseudo
σ2

bc = 6, σ2
e/σ

2
abc = 5.
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2 Estimation And Prediction

The OLS equations that include missing observations have 63 unknowns as follows

a 1− 3 ac 19− 27
b 4− 6 bc 28− 36
c 7− 9 abc 37− 63
ab 10− 18

W is a 20 × 63 matrix with 1’s in the following columns of the 20 rows. The other
elements are 0.

Levels of
a b c Cols. with 1
1 1 1 1,4,7,10,19,28,37
1 1 2 1,4,8,10,20,29,38
1 1 3 1,4,9,10,21,30,39
1 2 1 1,5,7,11,19,31,40
1 2 3 1,5,9,11,21,33,42
1 3 1 1,6,7,12,19,34,43
1 3 2 1,6,8,12,20,35,44
2 1 1 2,4,7,13,22,28,46
2 1 2 2,4,8,13,23,29,47
2 1 3 2,4,9,13,24,30,48
2 2 2 2,5,8,14,23,32,50
2 2 3 2,5,9,14,24,33,51
2 3 1 2,6,7,15,22,34,52
2 3 2 2,6,8,15,23,35,53
3 1 2 3,4,8,16,26,29,56
3 1 3 3,4,9,16,27,30,57
3 2 1 3,5,7,17,25,31,58
3 2 2 3,5,8,17,26,32,59
3 2 3 3,5,9,17,27,33,60
3 3 1 3,6,7,18,25,34,61

Let N be a 20 × 20 diagonal matrix with filled subclass numbers in the diagonal, that is
N = diag(5,2,. . . ,5,7). Then the OLS coefficient matris is W

′
NW, and the right hand

side vector is W′Ny, where y = (3 5 . . . 7 5)′. The right hand side vector is (107, 137,
187, 176, 150, 105, 111, 153, 167, 31, 48, 28, 45, 50, 42, 100, 52, 35, 57, 20, 30, 11, 88, 38,
43, 45, 99, 20, 58, 98, 32, 49, 69, 59, 46, 0, 15, 10, 6, 24, 0, 24, 18, 10, 0, 5, 12, 28, 0, 40,
10, 6, 36, 0, 0, 36, 64, 8, 9, 35, 35, 0, 0).

Now we add the following diagonal matrix to the coefficient matrix, (2, 2, 2, 0, 0, 0,
0, 0, 0, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 5,
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5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5). A resulting mixed model solution is

a = (−.54801, .10555, .44246)′.

b = (6.45206, 6.13224, 5.77884)′.

c = (−1.64229, −.67094, 0)′.

ab = (−1.21520, .46354, .38632, .14669, .29571, −.37204,

1.06850, −.75924, −.01428)′.

ac = (.60807, −.70385, −.17822, −.63358, .85039, −.16403,

.02552, −.14653, .34225)′.

bc = (−.12431, .47539, −.35108, −.30013, −.05095, .35108,

.42444, −.42444, 0)′.

abc = (−.26516, .34587, −.80984, −.38914, 0, .66726, 1.14075,

−.90896, 0, .11598, −.38832, .36036, 0, .66901, −.49158,

−.62285, .39963, 0, 0, .61292, .02819, .02898, −.73014,

.24561, −.00857, 0, 0)′.

From these results the biased prediction of subclass means are in (32.1).

B1 B2 B3

A C1 C2 C3 C1 C2 C3 C1 C2 C3

1 3.265 4.135 3.350 4.324 4.622 6.888 6.148 2.909 5.439
2 4.420 6.971 6.550 3.957 7.331 6.229 3.038 5.667 5.348
3 6.222 8.234 7.982 3.928 4.217 6.754 5.006 4.965 6.549

(1)

Note that these are different from the yijk for filled subclasses, the latter being BLUE.
Also subclass means are predicted for those cases with no observations.

3 Tests Of Hypotheses

Suppose we wish to test the following hypotheses regarding b, c, and bc. Let

µjk = µ+ bj + ck + bcjk.

We test µj. are equal, µ.k are equal, and that all µjk - µj. - µ.k + µ.. are equal. Of course
these functions are not estimable if any jk subclass is missing as is true in our example.
Consequently we must resort to biased estimation and accompanying approximate tests
based on estimated MSE rather than sampling variances. We assume that our priors are
the correct values and proceed for the first test.

K′β =

(
1 1 1 0 0 0 −1 −1 −1 1 1 1 0 0
0 0 0 1 1 1 −1 −1 −1 0 0 0 1 1

0 −1 −1 −1 1 1 1 0 0 0 −1 −1 −1
1 −1 −1 −1 0 0 0 1 1 1 −1 −1 −1

)
β,

3



where β is the vector of µijk ordered k in j in i. From (32.1) the estimate of these functions
is (6.05893, 3.18058). To find the mean squared errors of this function we first compute

the mean squared errors of the µijk. This is WCW
′ ≡ P, where W is the matrix relating

ijk subclass means to the 63 elements of our model. C is a g-inverse of the mixed model
coefficient matrix. Then the mean squared error of K′β is

K′PK =

(
17.49718 13.13739

16.92104

)
.

Then
βo′

K′(K′PK)−1K′βo = 2.364,

and this is distributed approximately as χ2 with 2 d.f. under the null hypothesis.

To test C we use

K′β =

(
1 0 −1 1 0 −1 1 0 −1 1 0 −1 1 0
0 1 −1 0 1 −1 0 1 −1 0 1 −1 0 1

−1 1 0 −1 1 0 −1 1 0 −1 1 0 −1
−1 0 1 −1 0 1 −1 0 1 −1 0 1 −1

)
β .

K′βo = (−14.78060, −6.03849)′,

with

MSE =

(
17.25559 10.00658

14.13424

)
.

This gives the test criterion = 13.431, distributed approximately as χ2 with 2 d.f. under
the null hypothesis.

For B × C interaction we use

K′β =


1 0 −1 0 0 0 −1 0 1 1 0 −1 0 0
0 1 −1 0 0 0 0 −1 1 0 1 −1 0 0
0 0 0 1 0 −1 −1 0 1 0 0 0 1 0
0 0 0 0 1 −1 0 −1 1 0 0 0 0 1

0 −1 0 1 1 0 −1 0 0 0 −1 0 1
0 0 −1 1 0 1 −1 0 0 0 0 −1 1

−1 −1 0 1 0 0 0 1 0 −1 −1 0 1
−1 0 −1 1 0 0 0 0 1 −1 0 −1 1

 β .

This gives
K′βo = (−.83026, 5.25381, −4.51772, .09417)′,

with

MSE =


6.37074 4.31788 4.56453 3.64685

6.09614 3.77847 4.70751
6.32592 4.23108

6.31457

 .

4



The test criterion is 21.044 distributed approximately as χ2 with 4 d.f. under the null
hypothesis.

Note that in these examples of hypothesis testing the priors used were quite arbitrary.
The tests are of little value unless one has good prior estimates. This of course is true for
any unbalanced mixed model design.

4 REML Estimation By EM Method

We next illustrate one round of estimation of variances by the EM algorithm. We treat
σ2

bc as a variance. The first round of estimation is obtained from the mixed model solution
of Section 32.2. For σ2

e we compute

[y′y − soln. vector (r.h.s. vector)]/[n− rank (X)].

y′y = 2802.

Red = 2674.47.

σ̂2
e = (2802− 2674.47)/(78− 5) = 1.747.

σ̂2
a =

â′â + tr 1.747

 .28568 .10673 .10759
.28645 .10683

.28558


 /3 = .669

σ̂2
ab =

âb̂′âb̂ + tr 1.747


.2346 . . .

. . .

.26826


 /9 = .847.

σ̂2
ac =

âĉ′âĉ + tr 1.747


.19027 . . .

...
. . .

.18846


 /9 = .580.

σ̂2
bc =

b̂ĉ′b̂ĉ + tr 1.747


.14138 . . .

...
. . .

.16607


 /9 = .357.

σ̂2
abc =

âb̂ĉ′âb̂ĉ + tr 1.747


.16505 . . .

...
. . .

.20000


 /127 = .534.

The solution for four rounds follows.
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1 2 3 4
σ2

e 1.747 1.470 1.185 .915
σ2

a .169 .468 .330 .231
σ2

ab .847 .999 1.090 1.102
σ2

ac .580 .632 .638 .587
σ2

bc .357 .370 .362 .327
σ2

abc .534 .743 1.062 1.506

It appears that σ̂2
e and σ̂2

abc may be highly confounded, and convergence will be slow. Note
that σ̂2

e + σ̂2
abc does not change much.
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Chapter 33
Selection When Variances are Unequal

C. R. Henderson

1984 - Guelph

The mixed model equations for BLUP are well adapted to deal with variances that
differ from one subpopulation to another. These unequal variances can apply to either e
or to u or a subvector of u. For example, cows are to be selected from several herds, but
the variances differ from one herd to another. Some possibilities are the following.

1. σ2
a , additive genetic variance, is the same in all herds but the within herd σ2

e differ.

2. σ2
e is constant from one herd to another but intra-herd σ2

a differ.

3. Both σ2
a and σ2

e differ from herd to herd, but σ2
a/σ

2
e is constant. That is, intra-herd h2

is the same in all herds, but the phenotypic variance is different.

4. Both σ2
a and σ2

e differ among herds and so does σ2
a/σ

2
e .

1 Sire Evaluation With Unequal Variances

As an example, AI sires are sometimes evaluated across herds using

yijk = si + hj + eijk.

V ar(s) = Aσ2
s ,

V ar(e) = Iσ2
e ,

Cov(a, e′) = 0.

h is fixed. Suppose, however, that we assume, probably correctly, that within herd σ2
e

varies from herd to herd, probably related to the level of production. Suppose also that σ2
s

is influenced by the herd. That is, in the population of sires σ2
s is different when sires are

used in herd 1 as compared to σ2
s when these same sires are used in herd 2. Suppose further

that σ2
s/σ

2
e is the same for every herd. This may be a somewhat unrealistic assumption,

but it may be an adequate approximation. We can treat this as a multiple trait problem,
trait 1 being progeny values in herd 1, trait 2 being progeny values in herd 2, etc. For
purposes of illustration let us assume that all additive genetic correlations between pairs
of traits are 1. In that case if the true rankings of sires for herd 1 were known, then these
would be the true rankings in herd 2.

1



Let us order the progeny data by sire within herd. Then

R =


Iv1 0 . . . 0
0 Iv2 . . .
...

. . .
...

0 . . . . . . Ivt

 ,

where there are t herds.

G =


Aw11 Aw12 . . . Aw1t

Aw12 Aw22 . . . Aw2t
...

...
...

Aw1t Aw2t Awtt

 ,

where vi/wii is the same for all i = 1, . . . , t. Further wij = (wiiwjj)
.5. This is, of course,

an oversimplified model since it does not take into account season and year of freshening.
It would apply to a situation in which all data are from one year and season.

We illustrate this model with a small set of data.

nij yij

Sires 1 2 3 1 2 3
1 5 8 0 6 12 -
2 3 4 7 5 8 9
3 0 5 9 - 10 12

A =

 1 .5 .5
1 .25

1

 .

σ2
e for the 3 herds is 48, 108, 192, respectively. V ar(s) for the 3 herds is 4A 6A 8A

9A 12A
16A

 .

Note that 6 = [4(9)].5, 8 = [4(16)].5, and 12 = [9(16)].5. Accordingly G is singular and
we need to use the method described in Chapter 5 for singular G. Now the GLS coefficient
matrix for fixed s is in (33.1) . . . (33.3). This corresponds to ordering (s11, s21, s31, s12, s22, s32, s13, s23, s33, h1, h2, h3).
The first subscript on s refers to sire number and the second to herd number. The right
hand side vector is (.1250, .1042, 0, .1111, .0741, .0926, 0, .0469, .0625, .2292, .2778,
.1094)’.

The upper diagonal element of (33.1) to (33.3) is 5/48, 5 being the number of progeny
of sire 1 in herd 1, and 48 being σ2

e for herd 1. The lower diagonal is 16/192. The first
element of the right hand side is 6/48, and the last is 21/192.
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Upper left 6 × 6

diag(.10417, .06250, 0, .07407, .03704, .04630). (1)

Upper right 6 × 6 and (lower left 6 × 6)’

0 0 0 .10417 0 0
0 0 0 .06250 0 0
0 0 0 0 0 0
0 0 0 0 .07407 0
0 0 0 0 .03704 0
0 0 0 0 .04630 0


. (2)

Lower right 6 × 6 

0 0 0 0 0 0
.03646 0 0 0 .03646

.04687 0 0 .04687
.16667 0 0

.15741 0
.08333


. (3)

Now we multiply these equations by
4A 6A 8A 0

9A 12A 0
16A 0

I3

 ,

and add 1 to each of the first 9 diagonal elements. Solving these equations the solution
is (-.0720, .0249, .0111, -.1080, .0373, .0166, -.1439, .0498, .0222, 1.4106, 1.8018, 1.2782)′.
Note that ŝi1/ŝi2 = 2/3, ŝi1/ŝi3 = 1/2, ŝi2/ŝi3 = 3/4. These are in the proportion
(2:3:4) which is (4.5:9.5:16.5). Because of this relationship we can reduce the mixed model
equations to a set involving si1 and hj by premultiplying the equations by

1. 0 0 1.5 0 0 2. 0 0 0 0 0
0 1. 0 0 1.5 0 0 2. 0 0 0 0
0 0 1. 0 0 1.5 0 0 2. 0 0 0
0 0 0 0 0 0 0 0 0 1. 0 0
0 0 0 0 0 0 0 0 0 0 1. 0
0 0 0 0 0 0 0 0 0 0 0 1.


. (4)

Then the resulting coefficient matrix is post-multiplied by the transpose of matrix (33.4).
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This gives equation (33.5).



15.104 4.229 4.229 3.927 5.035 2.417
3.927 15.708 2.115 3.323 3.726 2.794
3.927 2.115 15.708 1.964 4.028 3.247
0.104 0.062 0.0 0.167 0.0 0.0
0.111 0.056 0.069 0.0 0.157 0.0
0.0 0.073 0.094 0.0 0.0 0.083





ŝ11

ŝ21

ŝ31

ĥ1

ĥ2

ĥ3


=



16.766
15.104
14.122
.229
.278
.109


. (5)

The solution is (-.0720, .0249, .0111, 1.4016, 1.8018, 1.2782)′. These are the same as
before.

How would one report sire predictions in a problem like this? Probably the logical
thing to do is to report them for a herd with average σ2

e . Then it should be pointed out
that sires are expected to differ more than this in herds with large σ2

e and to differ less in
herds with small σ2

e . A simpler method is to set up equations at once involving only si1

or any other chosen sij (j fixed). We illustrate with si1. The W matrix for our example
with subclass means ordered sires in herds is

1 0 0 1 0 0
0 1 0 1 0 0

1.5 0 0 0 1 0
0 1.5 0 0 1 0
0 0 1.5 0 1 0
0 2 0 0 0 1
0 0 2 0 0 1


.

This corresponds to ŝi2 = 1.5 ŝi1, and ŝi3 = 2 ŝi1. Now compute the diagonal matrix

diag(5, 3, 8, 4, 5, 7, 9) [dg(48, 48, 108, 108, 108, 192, 192)]−1 ≡ D.

Then the GLS coefficient matrix is W
′
DW and the right hand side is W

′
Dy, where y is

the subclass mean vector. This gives



.2708 0 0 .1042 .1111 0
.2917 0 .0625 .0556 .0729

.2917 0 .0694 .0937
.1667 0 0

.1574 0
.0833





ŝ11

ŝ21

ŝ31

ĥ1

ĥ2

ĥ3


=



.2917

.3090

.2639

.2292

.2778

.1094


. (6)

Then add (4A)−1 to the upper 3 x 3 submatrix of (33.6) to obtain mixed model equations.
Remember 4A is the variance of the sires in herd 1. The solution to these equation is as
before, (-.0720, .0249, .0111, 1.4106, 1.8018, 1.2782)′.
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2 Cow Evaluation With Unequal Variances

Next we illustrate inter-herd joint cow and sire when herd variances are unequal. We
assume a simple model

yij = hi + aj + eij.

h is fixed, a is additive genetic merit with

V ar(a) =


Ag11 Ag12 . . . Ag1t

Ag12 Ag22 . . . Ag2t
...

...
...

Ag1t Ag2t Agtt

 .

A is the numerator relationship for all animals. There are t herds, and we treat production
as a different trait in each herd. We assume genetic correlations of 1. Therefore gij =
(giigjj)

.5.

V ar(e) =


Iv1 0

Iv2

. . .

0 Ivt

 .

First we assume σ2
a/σ

2
e is the same for all herds. Therefore gii/vi is the same for all herds.

As an example suppose that we have 2 herds with cows 2, 3 making records in herd
1 and cows 4, 5 making records in herd 2. These animals are out of unrelated dams, and
the sire of 2 and 4 is 1. The records are 3, 2, 5, 6.

A =


1 .5 0 .5 0

1 0 .25 0
1 0 0

1 0
1

 .

Ordering the data by cow number and the unknowns by h1, h2, a in herd 1, a in herd 2
the incidence matrix is

1 0 0 1 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 0 0 1

 .

Suppose that

G =

(
4A 8A
8A 16A

)
, R =

(
12I 0

0 48I

)
.
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Then σ2
e/σ

2
a = 3 in each herd, implying that h2 = .25. Note that G is singular so the

method for singular G is used. With these parameters the mixed model solution is

ĥ = (2.508, 5.468).

â in herd 1 = (.030, .110, −.127, −.035, .066).

â in herd 2 = (.061, .221, −.254, −.069, .133).

Note that âi in herd 2 = 2 âi in herd 1 corresponding to (16/4).5 = 2.

A simpler method is to use an incidence matrix as follows.
1 0 0 1 0 0 0
1 0 0 0 1 0 0
0 1 0 0 0 2 0
0 1 0 0 0 0 2


This corresponds to unknowns h1, h2, a in herd 1. Now G = 4A and R is the same as
before. The resulting solution is the same as before for ĥ and â in herd 1. Then â in herd
2 is 2 times â in herd 1.

Now suppose that G is the same as before but σ2
e = 12,24 respectively. Then h2 is

higher in herd 2 than in herd 1. This leads again to the â in herd 2 being twice â in herd
1, but the â for cows making records in herd 2 are relatively more variable, and if we were
selecting a single cow, say for planned mating, the chance that she would come from herd
2 is increased. The actual solution in this example is

ĥ = (2.513, 5.468).

â in herd 1 = (.011, .102, −.128, −.074, .106).

â in herd 2 = twice those in herd 1.

The only reason we can compare cows in different herds is the use of sires across herds.

A problem with the methods of this chapter is that the individual intra-herd variances
must be estimated with limited data. It would seem, therefore, that it might be advis-
able to take as the estimate for an individual herd, the estimate coming from that herd
regressed toward the mean of variances of all herds, the amount of regression depending
upon the number of observations. This would imply, perhaps properly, that intra- herd
variances are a sample of some population of variances. I have not derived a method
comparable to BLUP for this case.
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